我的数据如下所示:
# Data Sample
Time Price V1 Time2 V2
2016-06-20 05:09:44 2086.50 1 05:09:44.284670 -1
2016-06-20 05:09:45 2086.75 5 05:09:45.212413 1
2016-06-20 05:09:45 2086.75 10 05:09:45.212413 1
2016-06-20 05:09:45 2086.75 1 05:09:45.212413 1
2016-06-20 05:09:46 2086.75 1 05:09:46.745124 1
2016-06-20 05:09:46 2086.75 1 05:09:46.745124 1
2016-06-20 05:09:46 2086.75 1 05:09:46.819954 1
2016-06-20 05:09:49 2086.75 1 05:09:49.279392 1
2016-06-20 05:09:49 2086.75 1 05:09:49.279392 1
2016-06-20 05:09:49 2086.75 1 05:09:49.352346 1
2016-06-20 05:09:49 2086.50 2 05:09:49.964023 -1
2016-06-20 05:09:49 2086.50 1 05:09:49.964023 -1
2016-06-20 05:09:55 2086.50 1 05:09:55.343324 -1
2016-06-20 05:09:57 2086.75 1 05:09:57.551886 1
2016-06-20 05:09:57 2086.75 1 05:09:57.650549 1
2016-06-20 05:09:57 2086.75 1 05:09:57.654352 1
2016-06-20 05:09:57 2086.75 1 05:09:57.654352 1
2016-06-20 05:09:57 2086.75 1 05:09:57.726578 1
我想清理数据,以便在每秒内将所有V1加起来。 所以我想要的输出看起来像:
# Desired Example
Time V1
2016-06-20 05:09:44 1
2016-06-20 05:09:45 16
2016-06-20 05:09:46 3
2016-06-20 05:09:47 0
2016-06-20 05:09:48 0
2016-06-20 05:09:49 6
2016-06-20 05:09:50 0
2016-06-20 05:09:51 0
2016-06-20 05:09:52 0
2016-06-20 05:09:53 0
2016-06-20 05:09:54 0
2016-06-20 05:09:55 1
2016-06-20 05:09:56 0
2016-06-20 05:09:57 5
我将“时间”列转换为字符并将其拆分并在列表中处理它们。但是,数据非常大,计算时间太长。有没有办法通过动物园的某些功能来做到这一点?
下面是使用dput的类似数据集:
结构(清单(V3 = c(2086.5,2086.75,2086.75,2086.75,2086.75, 2086.75,2086.75,2086.75,2086.75,2086.75,2086.75,2086.75, 2086.75,2086.75,2086.75,2086.75,2086.75,2086.75,2086.75, 2086.5,2086.5,2086.5,2086.5,2086.5,2086.75,2086.75,2086.75, 2086.75,2086.75,2086.75,2086.75,2086.5,2086.5,2086.5,2086.5, 2086.5,2086.5,2086.5,2086.5,2086.5,2086.5,2086.5,2086.5, 2086.5,2086.75,2086.75,2086.75,2086.75,2086.75,2086.75), V4 = c(1L,5L,10L,1L,6L,8L,1L,4L,6L,2L,8L,2L,2L, 1L,1L,1L,1L,1L,1L,2L,1L,2L,1L,1L,1L,1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,2L,1L,8L,1L,1L,1L,4L, 2L,1L,1L,1L,1L,1L,1L),V6 = c(“05:09:44.284670”,“05:09:45.212413”, “05:09:45.212413”,“05:09:45.212413”,“05:09:45.212413”, “05:09:45.299104”,“05:09:45.299104”,“05:09:45.301513”, “05:09:45.301513”,“05:09:45.389110”,“05:09:45.392840”, “05:09:45.475688”,“05:09:45.543980”,“05:09:46.745124”, “05:09:46.745124”,“05:09:46.819954”,“05:09:49.279392”, “05:09:49.279392”,“05:09:49.352346”,“05:09:49.964023”, “05:09:49.964023”,“05:09:49.964023”,“05:09:49.964023”, “05:09:55.343324”,“05:09:57.551886”,“05:09:57.650549”, “05:09:57.654352”,“05:09:57.654352”,“05:09:57.726578”, “05:09:57.728848”,“05:09:58.286788”,“05:10:00.390708”, “05:10:00.473617”,“05:10:00.494903”,“05:10:00.564042”, “05:10:08.24907”,“05:10:09.633247”,“05:10:09.633247”,“05:10:09.633247”, “05:10:09.633247”,“05:10:09.633247”,“05:10:09.633247”, “05:10:09.633247”,“05:10:09.633247”,“05:10:09.830544”, “05:10:09.924001”,“05:10:09.924001”,“05:10:09.924001”, “05:10:09.924001”,“05:10:09.924001”),V7 = c(-1L,1L,1L, 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L, 1L,-1L,-1L,-1L,-1L,-1L,1L,1L,1L,1L,1L,1L,1L, -1L,-1L,-1L,-1L,-1L,-1L,-1L,-1L,-1L,-1L,-1L,-1L, -1L,1L,1L,1L,1L,1L,1L)),. Name = c(“V3”,“V4”,“V6”, “V7”),row.names = c(NA,50L),class =“data.frame”)
答案 0 :(得分:0)
data.table
非常快。尝试:
library(data.table)
library(lubridate)
mydata<-data.table(mydata)
mydata$Time<-ymd_hms(mydata$Time)
setkey(mydata, Time)
mydata.summed<-mydata[, .(V1 = sum(V1)), by = Time] # sums by each second
mydata2<-data.table(Time = seq(min(mydata$Time), max(mydata$Time), by = 1))
#create a new data.table to fill in the seconds you do not have values for
mydata<-mydata.summed[mydata2]
#merge them. see ?data.table for more information here
mydata[is.na(mydata)]<-0
#change the NAs that were created by the merge to 0
head(mydata, 10)
Time V1
1: 2016-06-20 05:09:44 1
2: 2016-06-20 05:09:45 16
3: 2016-06-20 05:09:46 3
4: 2016-06-20 05:09:47 0
5: 2016-06-20 05:09:48 0
6: 2016-06-20 05:09:49 6
7: 2016-06-20 05:09:50 0
8: 2016-06-20 05:09:51 0
9: 2016-06-20 05:09:52 0
10: 2016-06-20 05:09:53 0