我正在尝试浏览一个文件中的每个功能(每行1个),并根据第二个文件中该行的一列找到所有匹配的功能。我有这个解决方案,它可以在小文件上做我想要的,但是在大文件上它很慢(我的文件有> 20,000,000行)。 Here's a sample of the two input files.
我的(慢)代码:
FEATUREFILE = 'S2_STARRseq_rep1_vsControl_peaks.bed'
CONSERVATIONFILEDIR = './conservation/'
with open(str(FEATUREFILE),'r') as peakFile, open('featureConservation.td',"w+") as outfile:
for line in peakFile.readlines():
chrom = line.split('\t')[0]
startPos = int(line.split('\t')[1])
endPos = int(line.split('\t')[2])
peakName = line.split('\t')[3]
enrichVal = float(line.split('\t')[4])
#Reject negative peak starts, if they exist (sometimes this can happen w/ MACS)
if startPos > 0:
with open(str(CONSERVATIONFILEDIR) + str(chrom)+'.bed','r') as conservationFile:
cumulConserv = 0.
n = 0
for conservLine in conservationFile.readlines():
position = int(conservLine.split('\t')[1])
conservScore = float(conservLine.split('\t')[3])
if position >= startPos and position <= endPos:
cumulConserv += conservScore
n+=1
featureConservation = cumulConserv/(n)
outfile.write(str(chrom) + '\t' + str(startPos) + '\t' + str(endPos) + '\t' + str(peakName) + '\t' + str(enrichVal) + '\t' + str(featureConservation) + '\n')
答案 0 :(得分:1)
出于我的目的,最好的解决方案似乎是重写上面的pandas代码。以下是一些非常大的文件对我有用的东西:
from __future__ import division
import pandas as pd
FEATUREFILE = 'S2_STARRseq_rep1_vsControl_peaks.bed'
CONSERVATIONFILEDIR = './conservation/'
peakDF = pd.read_csv(str(FEATUREFILE), sep = '\t', header=None, names=['chrom','start','end','name','enrichmentVal'])
#Reject negative peak starts, if they exist (sometimes this can happen w/ MACS)
peakDF.drop(peakDF[peakDF.start <= 0].index, inplace=True)
peakDF.reset_index(inplace=True)
peakDF.drop('index', axis=1, inplace=True)
peakDF['conservation'] = 1.0 #placeholder
chromNames = peakDF.chrom.unique()
for chromosome in chromNames:
chromSubset = peakDF[peakDF.chrom == str(chromosome)]
chromDF = pd.read_csv(str(CONSERVATIONFILEDIR) + str(chromosome)+'.bed', sep='\t', header=None, names=['chrom','start','end','conserveScore'])
for i in xrange(0,len(chromSubset.index)):
x = chromDF[chromDF.start >= chromSubset['start'][chromSubset.index[i]]]
featureSubset = x[x.start < chromSubset['end'][chromSubset.index[i]]]
x=None
featureConservation = float(sum(featureSubset.conserveScore)/(chromSubset['end'][chromSubset.index[i]]-chromSubset['start'][chromSubset.index[i]]))
peakDF.set_value(chromSubset.index[i],'conservation',featureConservation)
featureSubset=None
peakDF.to_csv("featureConservation.td", sep = '\t')
答案 1 :(得分:0)
首先,每当您从conservationFile
读取一行时,就会循环遍历所有peakFile
,因此请在break
之后的n+=1
中添加In [13]: x = numpy.array([[1, 2, 3],
....: [4, 5, 6]])
In [14]: x[:, :2].reshape([4]).base is x
Out[14]: False
应该有所帮助。假设只有一个匹配。
另一种选择是尝试使用可能有助于缓冲的mmap
答案 2 :(得分:0)
为此制作了Bedtools,特别是intersect
功能:
http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html