我目前正在尝试为光流实施HS方法,但我的u
和v
似乎总是只有零。我似乎无法在这里弄清楚我的错误:
vid=VideoReader('outback.AVI');
vid.CurrentTime = 1.5;
alpha=1;
iterations=10;
frame_one = readFrame(vid);
vid.CurrentTime = 1.6;
frame_two = readFrame(vid);
% convert to grayscale
fone_gr = rgb2gray(frame_one);
ftwo_gr = rgb2gray(frame_two);
% construct for each image
sobelx=[-1 -2 -1; 0 0 0; 1 2 1];
sobely=sobelx';
time=[-1 1];
fx_fone=imfilter(fone_gr, sobelx);
fy_fone=imfilter(fone_gr, sobely);
ft_fone=imfilter(fone_gr, time);
fx_ftwo=imfilter(ftwo_gr, sobelx);
fy_ftwo=imfilter(ftwo_gr, sobely);
ft_ftwo=imfilter(ftwo_gr, time);
Ix=double(fx_fone+fx_ftwo);
Iy=double(fy_fone+fy_ftwo);
It=double(ft_fone+ft_ftwo);
% flow-variables (velocity = 0 assumption)
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
% iteratively solve for u and v
for i=1:iterations
neighborhood_average_u=conv2(u, velocity_kernel, 'same');
neighborhood_average_v=conv2(v, velocity_kernel, 'same');
data_term = (Ix .* neighborhood_average_u + Iy .* neighborhood_average_v + It);
smoothness_term = alpha^2 + (Ix).^2 + (Iy).^2;
numerator_u = Ix .* data_term;
numerator_v = Iy .* data_term;
u = neighborhood_average_u - ( numerator_u ./ smoothness_term );
v = neighborhood_average_v - ( numerator_v ./ smoothness_term );
end
u(isnan(u))=0;
v(isnan(v))=0;
figure
imshow(frame_one); hold on;
quiver(u, v, 5, 'color', 'b', 'linewidth', 2);
set(gca, 'YDir', 'reverse');
我唯一不确定的是计算邻域平均值:
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
[..]
neighborhood_average_u=conv2(u, velocity_kernel, 'same');
neighborhood_average_v=conv2(v, velocity_kernel, 'same');
这不会总是导致只有零的卷积矩阵吗?
我考虑将其更改为以下内容,因为我需要在图像的每个像素上使用速度内核计算平均速度:
velocity_kernel=[0 1 0; 1 0 1; 0 1 0];
u = double(0);
v = double(0);
[..]
neighborhood_average_u=conv2(Ix, velocity_kernel, 'same');
neighborhood_average_v=conv2(Iy, velocity_kernel, 'same');
但我仍然不知道这是否是正确的方法。我按照MATLAB页面底部的说明操作: http://de.mathworks.com/help/vision/ref/opticalflowhs-class.html
答案 0 :(得分:0)
我发现这个paper有一些进一步的解释,还有一些matlab代码。
他们按如下方式计算u和v的平均值:
% initial values
u = 0; v = 0;
% weighted average kernel
kernel = [1/12 1/6 1/12; 1/6 0 1/6; 1/12 1/6 1/12];
for i = 1:iterations
uAvg = conv2( u, kernel 'same' );
vAvg = conv2( v, kernel 'same' );
...
end