有没有办法让tensorflow tf.Print输出出现在Jupyter Notebook输出中

时间:2016-06-18 15:13:13

标签: tensorflow jupyter-notebook

我在Jupyter笔记本中使用tf.Print操作。它可以根据需要工作,但只会将输出打印到控制台,而无需在笔记本中打印。有没有办法解决这个问题?

一个例子如下(在笔记本中):

将tensorflow导入为tf

a = tf.constant(1.0)

a = tf.Print(a,[a],' hi')

sess = tf.Session()

a.eval(会话= SESS)

该代码将打印' hi [1]'在控制台中,但笔记本中没有任何内容。

5 个答案:

答案 0 :(得分:8)

2017年2月3日更新 我已将其包装到memory_util包中。用法示例

# install memory util
import urllib.request
response = urllib.request.urlopen("https://raw.githubusercontent.com/yaroslavvb/memory_util/master/memory_util.py")
open("memory_util.py", "wb").write(response.read())

import memory_util

sess = tf.Session()
a = tf.random_uniform((1000,))
b = tf.random_uniform((1000,))
c = a + b
with memory_util.capture_stderr() as stderr:
    sess.run(c.op)

print(stderr.getvalue())

**旧东西**

您可以重用IPython核心中的FD redirector。 (马克桑德勒的想法)

import os
import sys

STDOUT = 1
STDERR = 2

class FDRedirector(object):
    """ Class to redirect output (stdout or stderr) at the OS level using
        file descriptors.
    """ 

    def __init__(self, fd=STDOUT):
        """ fd is the file descriptor of the outpout you want to capture.
            It can be STDOUT or STERR.
        """
        self.fd = fd
        self.started = False
        self.piper = None
        self.pipew = None

    def start(self):
        """ Setup the redirection.
        """
        if not self.started:
            self.oldhandle = os.dup(self.fd)
            self.piper, self.pipew = os.pipe()
            os.dup2(self.pipew, self.fd)
            os.close(self.pipew)

            self.started = True

    def flush(self):
        """ Flush the captured output, similar to the flush method of any
        stream.
        """
        if self.fd == STDOUT:
            sys.stdout.flush()
        elif self.fd == STDERR:
            sys.stderr.flush()

    def stop(self):
        """ Unset the redirection and return the captured output. 
        """
        if self.started:
            self.flush()
            os.dup2(self.oldhandle, self.fd)
            os.close(self.oldhandle)
            f = os.fdopen(self.piper, 'r')
            output = f.read()
            f.close()

            self.started = False
            return output
        else:
            return ''

    def getvalue(self):
        """ Return the output captured since the last getvalue, or the
        start of the redirection.
        """
        output = self.stop()
        self.start()
        return output

import tensorflow as tf
x = tf.constant([1,2,3])
a=tf.Print(x, [x])

redirect=FDRedirector(STDERR)

sess = tf.InteractiveSession()
redirect.start();
a.eval();
print "Result"
print redirect.stop()

答案 1 :(得分:3)

我遇到了同样的问题并在我的笔记本中使用了这样的函数来解决它:

def tf_print(tensor, transform=None):

    # Insert a custom python operation into the graph that does nothing but print a tensors value 
    def print_tensor(x):
        # x is typically a numpy array here so you could do anything you want with it,
        # but adding a transformation of some kind usually makes the output more digestible
        print(x if transform is None else transform(x))
        return x
    log_op = tf.py_func(print_tensor, [tensor], [tensor.dtype])[0]
    with tf.control_dependencies([log_op]):
        res = tf.identity(tensor)

    # Return the given tensor
    return res


# Now define a tensor and use the tf_print function much like the tf.identity function
tensor = tf_print(tf.random_normal([100, 100]), transform=lambda x: [np.min(x), np.max(x)])

# This will print the transformed version of the tensors actual value 
# (which was summarized to just the min and max for brevity)
sess = tf.InteractiveSession()
sess.run([tensor])
sess.close()

仅供参考,使用记录器代替调用" print"在我的自定义函数中为我创造了奇迹,因为标准输出通常由jupyter缓冲而未显示之前"损失是Nan"一种错误 - 在我的案例中首先使用该函数的全部意义。

答案 2 :(得分:2)

您可以查看发送jupyter notebook的终端以查看消息。

import tensorflow as tf

tf.InteractiveSession()

a = tf.constant(1)
b = tf.constant(2)

opt = a + b
opt = tf.Print(opt, [opt], message="1 + 2 = ")

opt.eval()

在终端,我可以看到:

2018-01-02 23:38:07.691808: I tensorflow/core/kernels/logging_ops.cc:79] 1 + 2 = [3]

答案 3 :(得分:0)

一种简单的方法,在常规python中尝试过,但还没有jupyter。 os.dup2(sys.stdout.fileno(), 1) os.dup2(sys.stdout.fileno(), 2)

解释如下:In python, how to capture the stdout from a c++ shared library to a variable

答案 4 :(得分:0)

我面临的问题是,无法像在培训或评估中那样在Tensorflow Graph中运行会话。 这就是为什么使用sess.run(opt)opt.eval()的选项不是我的解决方案。 最好的办法是使用tf.Print()并将日志记录重定向到外部文件。 我使用一个临时文件来完成此任务,然后将其传输到这样的常规文件中:

STDERR=2
import os
import sys
import tempfile

class captured:
    def __init__(self, fd=STDERR):
        self.fd = fd
        self.prevfd = None
    def __enter__(self):
        t = tempfile.NamedTemporaryFile()
        self.prevfd = os.dup(self.fd)
        os.dup2(t.fileno(), self.fd)
        return t
    def __exit__(self, exc_type, exc_value, traceback):
        os.dup2(self.prevfd, self.fd)

with captured(fd=STDERR) as tmp:
    ...
    classifier.evaluate(input_fn=input_fn, steps=100)

with open('log.txt', 'w') as f:
    print(open(tmp.name).read(), file=f)

然后在我的评估中,我这样做:

a = tf.constant(1)
a = tf.Print(a, [a], message="a: ")