我在Jupyter笔记本中使用tf.Print操作。它可以根据需要工作,但只会将输出打印到控制台,而无需在笔记本中打印。有没有办法解决这个问题?
一个例子如下(在笔记本中):
将tensorflow导入为tf
a = tf.constant(1.0)
a = tf.Print(a,[a],' hi')
sess = tf.Session()
a.eval(会话= SESS)
该代码将打印' hi [1]'在控制台中,但笔记本中没有任何内容。
答案 0 :(得分:8)
2017年2月3日更新 我已将其包装到memory_util包中。用法示例
# install memory util
import urllib.request
response = urllib.request.urlopen("https://raw.githubusercontent.com/yaroslavvb/memory_util/master/memory_util.py")
open("memory_util.py", "wb").write(response.read())
import memory_util
sess = tf.Session()
a = tf.random_uniform((1000,))
b = tf.random_uniform((1000,))
c = a + b
with memory_util.capture_stderr() as stderr:
sess.run(c.op)
print(stderr.getvalue())
**旧东西**
您可以重用IPython核心中的FD redirector。 (马克桑德勒的想法)
import os
import sys
STDOUT = 1
STDERR = 2
class FDRedirector(object):
""" Class to redirect output (stdout or stderr) at the OS level using
file descriptors.
"""
def __init__(self, fd=STDOUT):
""" fd is the file descriptor of the outpout you want to capture.
It can be STDOUT or STERR.
"""
self.fd = fd
self.started = False
self.piper = None
self.pipew = None
def start(self):
""" Setup the redirection.
"""
if not self.started:
self.oldhandle = os.dup(self.fd)
self.piper, self.pipew = os.pipe()
os.dup2(self.pipew, self.fd)
os.close(self.pipew)
self.started = True
def flush(self):
""" Flush the captured output, similar to the flush method of any
stream.
"""
if self.fd == STDOUT:
sys.stdout.flush()
elif self.fd == STDERR:
sys.stderr.flush()
def stop(self):
""" Unset the redirection and return the captured output.
"""
if self.started:
self.flush()
os.dup2(self.oldhandle, self.fd)
os.close(self.oldhandle)
f = os.fdopen(self.piper, 'r')
output = f.read()
f.close()
self.started = False
return output
else:
return ''
def getvalue(self):
""" Return the output captured since the last getvalue, or the
start of the redirection.
"""
output = self.stop()
self.start()
return output
import tensorflow as tf
x = tf.constant([1,2,3])
a=tf.Print(x, [x])
redirect=FDRedirector(STDERR)
sess = tf.InteractiveSession()
redirect.start();
a.eval();
print "Result"
print redirect.stop()
答案 1 :(得分:3)
我遇到了同样的问题并在我的笔记本中使用了这样的函数来解决它:
def tf_print(tensor, transform=None):
# Insert a custom python operation into the graph that does nothing but print a tensors value
def print_tensor(x):
# x is typically a numpy array here so you could do anything you want with it,
# but adding a transformation of some kind usually makes the output more digestible
print(x if transform is None else transform(x))
return x
log_op = tf.py_func(print_tensor, [tensor], [tensor.dtype])[0]
with tf.control_dependencies([log_op]):
res = tf.identity(tensor)
# Return the given tensor
return res
# Now define a tensor and use the tf_print function much like the tf.identity function
tensor = tf_print(tf.random_normal([100, 100]), transform=lambda x: [np.min(x), np.max(x)])
# This will print the transformed version of the tensors actual value
# (which was summarized to just the min and max for brevity)
sess = tf.InteractiveSession()
sess.run([tensor])
sess.close()
仅供参考,使用记录器代替调用" print"在我的自定义函数中为我创造了奇迹,因为标准输出通常由jupyter缓冲而未显示之前"损失是Nan"一种错误 - 在我的案例中首先使用该函数的全部意义。
答案 2 :(得分:2)
您可以查看发送jupyter notebook
的终端以查看消息。
import tensorflow as tf
tf.InteractiveSession()
a = tf.constant(1)
b = tf.constant(2)
opt = a + b
opt = tf.Print(opt, [opt], message="1 + 2 = ")
opt.eval()
在终端,我可以看到:
2018-01-02 23:38:07.691808: I tensorflow/core/kernels/logging_ops.cc:79] 1 + 2 = [3]
答案 3 :(得分:0)
一种简单的方法,在常规python中尝试过,但还没有jupyter。
os.dup2(sys.stdout.fileno(), 1)
os.dup2(sys.stdout.fileno(), 2)
解释如下:In python, how to capture the stdout from a c++ shared library to a variable
答案 4 :(得分:0)
我面临的问题是,无法像在培训或评估中那样在Tensorflow Graph中运行会话。
这就是为什么使用sess.run(opt)
或opt.eval()
的选项不是我的解决方案。
最好的办法是使用tf.Print()
并将日志记录重定向到外部文件。
我使用一个临时文件来完成此任务,然后将其传输到这样的常规文件中:
STDERR=2
import os
import sys
import tempfile
class captured:
def __init__(self, fd=STDERR):
self.fd = fd
self.prevfd = None
def __enter__(self):
t = tempfile.NamedTemporaryFile()
self.prevfd = os.dup(self.fd)
os.dup2(t.fileno(), self.fd)
return t
def __exit__(self, exc_type, exc_value, traceback):
os.dup2(self.prevfd, self.fd)
with captured(fd=STDERR) as tmp:
...
classifier.evaluate(input_fn=input_fn, steps=100)
with open('log.txt', 'w') as f:
print(open(tmp.name).read(), file=f)
然后在我的评估中,我这样做:
a = tf.constant(1)
a = tf.Print(a, [a], message="a: ")