我有一个名为' table'的数据框。像这样:
import pandas as pd
import numpy as np
table = pd.read_csv(main_data, sep='\t')
它产生了这个:
NAME SYMBOL STRING
A blah A34SA
B foo BS2812D
...
如何在pandas中创建新列,以便我有以下内容:
NAME SYMBOL STRING NUMBER
A blah A34SA 34
B foo BS2812D 2812
到目前为止我有这个:
table['NUMBER'] = table.STRING.str[int(filter(str.isdigit, table.STRING))]
但此功能在此上下文中不起作用。
谢谢!
答案 0 :(得分:2)
您可以尝试使用正则表达式从字符串中提取数字:
import re
def extNumber(row):
row['NUMBER'] = re.search("(\\d+)", row.STRING).group(1)
return row
df.apply(extNumber, axis=1)
答案 1 :(得分:2)
以下内容应该有效
table['NUMBER'] = table.STRING.apply(lambda x: int(''.join(filter(str.isdigit, x))))
答案 2 :(得分:2)
您可以使用正则表达式。
import re
table['NUMBER'] = table['STRING'].apply(lambda x: re.sub(r'[^0-9]','',x))
答案 3 :(得分:2)
我会这样做:
In [22]: df['NUMBER'] = df.STRING.str.extract('(?P<NUMBER>\d+)', expand=True).astype(int)
In [23]: df
Out[23]:
NAME SYMBOL STRING NUMBER
0 A blah A34SA 34
1 B foo BS2812D 2812
In [24]: df.dtypes
Out[24]:
NAME object
SYMBOL object
STRING object
NUMBER int32
dtype: object
时间针对20M行DF:
In [71]: df = pd.concat([df] * 10**7, ignore_index=True)
In [72]: df.shape
Out[72]: (20000000, 3)
In [73]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20000000 entries, 0 to 19999999
Data columns (total 3 columns):
NAME object
SYMBOL object
STRING object
dtypes: object(3)
memory usage: 457.8+ MB
In [74]: %timeit df.STRING.str.replace(r'\D+', '').astype(int)
1 loop, best of 3: 507 ms per loop
In [75]: %timeit df.STRING.str.extract('(?P<NUMBER>\d+)', expand=True).astype(int)
1 loop, best of 3: 434 ms per loop
In [76]: %timeit df.STRING.apply(lambda x: int(''.join(filter(str.isdigit, x))))
1 loop, best of 3: 562 ms per loop
In [77]: %timeit df['STRING'].apply(lambda x: re.sub(r'[^0-9]','',x))
1 loop, best of 3: 552 ms per loop