我在tensorflow中实现了DeepMind的DQN算法,并在我调用Ambiguous use of fetchRequest()
的行上遇到此错误:
optimizer.minimize(self.loss)
通过阅读有关此错误的其他帖子,我发现这意味着损失功能并不依赖于用于设置模型的任何张量,但在我的代码中我可以'看看会是怎样的。 ValueError: No gradients provided for any variable...
函数显然取决于对qloss()
函数的调用,该函数取决于所有图层张量进行计算。
答案 0 :(得分:1)
我发现问题在于,在我的qloss()
函数中,我从张量中提取值,对它们进行操作并返回值。虽然这些数值确实取决于张量,但它们并没有在张量中包含在内,所以TensorFlow无法判断它们是否依赖于图中的张量。
我通过更改qloss()
来修复此问题,以便它直接在张量上执行操作并返回张量。这是新功能:
def qloss(actions, rewards, target_Qs, pred_Qs):
"""
Q-function loss with target freezing - the difference between the observed
Q value, taking into account the recently received r (while holding future
Qs at target) and the predicted Q value the agent had for (s, a) at the time
of the update.
Params:
actions - The action for each experience in the minibatch
rewards - The reward for each experience in the minibatch
target_Qs - The target Q value from s' for each experience in the minibatch
pred_Qs - The Q values predicted by the model network
Returns:
A list with the Q-function loss for each experience clipped from [-1, 1]
and squared.
"""
ys = rewards + DISCOUNT * target_Qs
#For each list of pred_Qs in the batch, we want the pred Q for the action
#at that experience. So we create 2D list of indeces [experience#, action#]
#to filter the pred_Qs tensor.
gather_is = tf.squeeze(np.dstack([tf.range(BATCH_SIZE), actions]))
action_Qs = tf.gather_nd(pred_Qs, gather_is)
losses = ys - action_Qs
clipped_squared_losses = tf.square(tf.minimum(tf.abs(losses), 1))
return clipped_squared_losses