我试图将我桌子的某些列转换为行。 我使用的是Python和Spark 1.5.0。这是我的初始表:
+-----+-----+-----+-------+
| A |col_1|col_2|col_...|
+-----+-------------------+
| 1 | 0.0| 0.6| ... |
| 2 | 0.6| 0.7| ... |
| 3 | 0.5| 0.9| ... |
| ...| ...| ...| ... |
我想有这样的事情:
+-----+--------+-----------+
| A | col_id | col_value |
+-----+--------+-----------+
| 1 | col_1| 0.0|
| 1 | col_2| 0.6|
| ...| ...| ...|
| 2 | col_1| 0.6|
| 2 | col_2| 0.7|
| ...| ...| ...|
| 3 | col_1| 0.5|
| 3 | col_2| 0.9|
| ...| ...| ...|
有人知道我能做到吗?谢谢你的帮助。
答案 0 :(得分:32)
使用基本的Spark SQL函数相对简单。
<强>的Python 强>
from pyspark.sql.functions import array, col, explode, struct, lit
df = sc.parallelize([(1, 0.0, 0.6), (1, 0.6, 0.7)]).toDF(["A", "col_1", "col_2"])
def to_long(df, by):
# Filter dtypes and split into column names and type description
cols, dtypes = zip(*((c, t) for (c, t) in df.dtypes if c not in by))
# Spark SQL supports only homogeneous columns
assert len(set(dtypes)) == 1, "All columns have to be of the same type"
# Create and explode an array of (column_name, column_value) structs
kvs = explode(array([
struct(lit(c).alias("key"), col(c).alias("val")) for c in cols
])).alias("kvs")
return df.select(by + [kvs]).select(by + ["kvs.key", "kvs.val"])
to_long(df, ["A"])
<强> Scala的强>:
import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.functions.{array, col, explode, lit, struct}
val df = Seq((1, 0.0, 0.6), (1, 0.6, 0.7)).toDF("A", "col_1", "col_2")
def toLong(df: DataFrame, by: Seq[String]): DataFrame = {
val (cols, types) = df.dtypes.filter{ case (c, _) => !by.contains(c)}.unzip
require(types.distinct.size == 1, s"${types.distinct.toString}.length != 1")
val kvs = explode(array(
cols.map(c => struct(lit(c).alias("key"), col(c).alias("val"))): _*
))
val byExprs = by.map(col(_))
df
.select(byExprs :+ kvs.alias("_kvs"): _*)
.select(byExprs ++ Seq($"_kvs.key", $"_kvs.val"): _*)
}
toLong(df, Seq("A"))
答案 1 :(得分:4)
Spark本地线性代数库目前非常弱:它们不包括上面的基本操作。
有一个JIRA可以解决Spark 2.1的问题 - 但是这对今天无法帮助。
需要考虑的事项:执行转置可能需要完全改变数据。
现在您需要直接编写RDD代码。我在scala中编写了transpose
- 但是没有在python中编写。这是scala
版本:
def transpose(mat: DMatrix) = {
val nCols = mat(0).length
val matT = mat
.flatten
.zipWithIndex
.groupBy {
_._2 % nCols
}
.toSeq.sortBy {
_._1
}
.map(_._2)
.map(_.map(_._1))
.toArray
matT
}
因此您可以将其转换为python供您使用。在这个特定时刻,我没有带宽来编写/测试:如果你无法进行转换,请告诉我。
至少 - 以下内容很容易转换为python
。
zipWithIndex
- &gt; enumerate()
(等价的python - 归功于@ zero323)map
- &gt; [someOperation(x) for x in ..]
groupBy
- &gt; itertools.groupBy()
这是flatten
的实现,它没有python等价物:
def flatten(L):
for item in L:
try:
for i in flatten(item):
yield i
except TypeError:
yield item
所以你应该把它们放在一起寻找解决方案。
答案 2 :(得分:3)
您可以使用 stack 函数:
例如:
df.selectExpr("stack(2, 'col_1', col_1, 'col_2', col_2) as (key, value)")
其中:
如果您有几列,则可以构建整个 stack 字符串以迭代列名,并将其传递给 selectExpr
答案 3 :(得分:2)
使用flatmap。像下面的东西应该工作
from pyspark.sql import Row
def rowExpander(row):
rowDict = row.asDict()
valA = rowDict.pop('A')
for k in rowDict:
yield Row(**{'A': valA , 'colID': k, 'colValue': row[k]})
newDf = sqlContext.createDataFrame(df.rdd.flatMap(rowExpander))
答案 4 :(得分:1)
我接受了@javadba写的Scala答案并创建了一个Python版本,用于转置DataFrame
中的所有列。这可能与OP提出的要求有点不同......
from itertools import chain
from pyspark.sql import DataFrame
def _sort_transpose_tuple(tup):
x, y = tup
return x, tuple(zip(*sorted(y, key=lambda v_k: v_k[1], reverse=False)))[0]
def transpose(X):
"""Transpose a PySpark DataFrame.
Parameters
----------
X : PySpark ``DataFrame``
The ``DataFrame`` that should be tranposed.
"""
# validate
if not isinstance(X, DataFrame):
raise TypeError('X should be a DataFrame, not a %s'
% type(X))
cols = X.columns
n_features = len(cols)
# Sorry for this unreadability...
return X.rdd.flatMap( # make into an RDD
lambda xs: chain(xs)).zipWithIndex().groupBy( # zip index
lambda val_idx: val_idx[1] % n_features).sortBy( # group by index % n_features as key
lambda grp_res: grp_res[0]).map( # sort by index % n_features key
lambda grp_res: _sort_transpose_tuple(grp_res)).map( # maintain order
lambda key_col: key_col[1]).toDF() # return to DF
例如:
>>> X = sc.parallelize([(1,2,3), (4,5,6), (7,8,9)]).toDF()
>>> X.show()
+---+---+---+
| _1| _2| _3|
+---+---+---+
| 1| 2| 3|
| 4| 5| 6|
| 7| 8| 9|
+---+---+---+
>>> transpose(X).show()
+---+---+---+
| _1| _2| _3|
+---+---+---+
| 1| 4| 7|
| 2| 5| 8|
| 3| 6| 9|
+---+---+---+
答案 5 :(得分:1)
一种非常方便的实施方式:
from pyspark.sql import Row
def rowExpander(row):
rowDict = row.asDict()
valA = rowDict.pop('A')
for k in rowDict:
yield Row(**{'A': valA , 'colID' : k, 'colValue' : row[k]})
newDf = sqlContext.createDataFrame(df.rdd.flatMap(rowExpander)
答案 6 :(得分:1)
使用pyspark sql
和create_map
函数来解决explode
的一种方法。
from pyspark.sql import functions as func
#Use `create_map` to create the map of columns with constant
df = df.withColumn('mapCol', \
func.create_map(func.lit('col_1'),df.col_1,
func.lit('col_2'),df.col_2,
func.lit('col_3'),df.col_3
)
)
#Use explode function to explode the map
res = df.select('*',func.explode(df.mapCol).alias('col_id','col_value'))
res.show()
答案 7 :(得分:0)
要在pySpark
中转置数据帧,我在临时创建的列上使用pivot
,在操作结束时将其放下。
说,我们有一个这样的表。我们想做的是找到每个listed_days_bin
值上的所有用户。
+------------------+-------------+
| listed_days_bin | users_count |
+------------------+-------------+
|1 | 5|
|0 | 2|
|0 | 1|
|1 | 3|
|1 | 4|
|2 | 5|
|2 | 7|
|2 | 2|
|1 | 1|
+------------------+-------------+
创建新的临时列-'pvt_value'
,对其进行汇总并调整结果
import pyspark.sql.functions as F
agg_df = df.withColumn('pvt_value', lit(1))\
.groupby('pvt_value')\
.pivot('listed_days_bin')\
.agg(F.sum('users_count')).drop('pvt_value')
新数据框应如下所示:
+----+---+---+
| 0 | 1 | 2 | # Columns
+----+---+---+
| 3| 13| 14| # Users over the bin
+----+---+---+