这基本上与以下问题相同:
但对于pyspark。
我曾经能够做类似的事情:
from pyspark.mllib.tree import DecisionTree
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo=categoricalFeatures, impurity='gini', maxDepth=5, maxBins=16)
print model.toDebugString()
我会对决策树有一个很好的可视化:
DecisionTreeModel classifier of depth 5 with 49 nodes
If (feature 1 in {0.0})
If (feature 0 in {0.0})
If (feature 2 <= 52.0)
If (feature 3 <= 26.0)
Predict: 0.0
...
我正在尝试将代码移植到pyspark.ml,但是我没有看到打印生成的树的任何方法
from pyspark.ml.classification import DecisionTreeClassifier
dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", maxDepth=5, maxBins=16, impurity='gini')
model = dt.fit(transformedTrainingData)
当我这样做时:
print model
我只得到第一行:
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_4cbda3dcd0bddd9d4a0b) of depth 5 with 43 nodes
关于如何获得漂亮的树输出的想法?
答案 0 :(得分:1)
我找到了解决方案。它不优雅,它违反了封装和你所学到的关于面向对象编程的一切,但它的工作原理:
print model._call_java("toDebugString")
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_4c3bb548827f07c590e6) of depth 5 with 49 nodes
If (feature 1 in {0.0})
If (feature 0 in {1.0,2.0})
If (feature 2 <= 5.0)
If (feature 3 <= 26.0)
Predict: 1.0
Else (feature 3 > 26.0)
If (feature 0 in {2.0})
...
答案 1 :(得分:0)
现在(在Spark 2.2中),您还可以简单地调用:
print(model.toDebugString)
您将得到类似的东西:
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_48b398caca43f9fd5bc1) of depth 15 with 5237 nodes
If (feature 39 <= 0.09)
If (feature 11 <= 369.79999999999995)
If (feature 33 <= 217.75400000000002)
If (feature 4 <= 3864.0)
If (feature 33 <= -0.01)
If (feature 12 <= 2950.0)
If (feature 33 <= -64.83)