我有一个Console.WriteLine(My.Inner.Namespace.Contains<SomeTypeA>()); // False
Console.WriteLine(My.Inner.Namespace.Contains<SomeTypeB>()); // True
我希望将其分成Seq[R]
,而我正在对此进行编码时,我想到了我可以使用自定义Tuple2[Seq[E], Seq[S]]
作为seqs元组的事实并且当练习试图编码时:
Bifunctor
这样可以正常工作,但由于某种原因,我不得不声明一个参数化类型别名来进行所有这些编译,即import scalaz.Bifunctor
type MyType[E, S] = (Seq[E], Seq[S])
case class MyVali[E, S](tp: (Seq[E], Seq[S]))(implicit bifunctor: Bifunctor[MyType]) {
def bimap[C, D](f: (E) => C, g: (S) => D): (Seq[C], Seq[D]) =
bifunctor.bimap(tp)(f, g)
def leftMap[C](f: (E) => C): (Seq[C], Seq[S]) =
bifunctor.leftMap(tp)(f)
def rightMap[D](g: (S) => D): (Seq[E], Seq[D]) =
bifunctor.rightMap(tp)(g)
}
val myValBifunctorInstance = new Bifunctor[MyType] {
override def bimap[A, B, C, D](fab: (Seq[A], Seq[B]))(f: (A) => C, g: (B) => D): (Seq[C], Seq[D]) =
(fab._1.map(f), fab._2.map(g))
}
MyVali((Seq.empty[String], Seq.empty[Int]))(myValBifunctorInstance).bimap(a => a, b => b)
我很难理解为什么这样做有效,而不是:
type MyType[E, S] = (Seq[E], Seq[S])
[error] ...(Seq [E],Seq [S])没有类型参数,预期:两个
[error] def myValBimap [E,S] = new Bifunctor [Tuple2 [Seq [E],Seq [S]]] {
当定义了这样的类型别名时,编译器是否会创建一个2类型的挂起(如嵌套的lambda类型?)?
答案 0 :(得分:1)
Sub PlayAllVideo()
Dim IE As Object
For Each cl In Range("A2:A22")
Set IE = CreateObject("InternetExplorer.Application")
'It is generally advisable to avoid using Select and ActiveCell
'cl.Select
IE.Visible = True
IE.Navigate cl.Hyperlinks.item(1).Address
Next cl
Set IE = Nothing
End Sub
上面def myValBimap[E, S] = new Bifunctor[Tuple2[Seq[E], Seq[S]]] { ... }
中的Tuple2[...]
不再有两个类型参数,因为Bifunctor
和E
已填写。
例如,S
尝试创建myValBimap[Int, String]
,类型Bifunctor[(Seq[Int], Seq[String])]
显然没有两个类型参数。
你可以写
(Seq[Int], Seq[String])
或Bifunctor[({ type λ[α, β] = (Seq[α], Seq[β])})#λ]
使用种类的投影机插件。如果您需要其他类型,则需要带有类型参数的隐式函数,可能类似于:
Bifunctor[λ[(α, β) => (Seq[α], Seq[β])]]
一个更简单的例子是析取/ implicit def myBimap[F[_]: Functor]: Bifunctor[λ[(α, β) => (F[α], F[β])]] = ???
的{{1}},它使用左侧的类型参数:
Functor
关于您的原始问题:您可以将\/
映射到implicit def functorDisj[L]: Functor[L \/ ?] = ???
implicit def functorDisj[L]: Functor[({ type λ[α] = L \/ α })#λ] = ???
并使用R
:
E \/ S