从以下示例开始:
fig, ax = plt.subplots()
df = pd.DataFrame({'n1':[1,2,1,3], 'n2':[1,3,2,1], 'l':['a','b','c','d']})
for label in df['l']:
df.plot('n1','n2', kind='scatter', ax=ax, s=50, linewidth=0.1, label=label)
我获得的是以下散点图:
我现在正尝试为这四个点中的每一个设置不同的颜色。我知道我可以在列表中循环一组,例如4种颜色,如:
colorlist = ['b','r','c','y']
但由于我的真实数据集包含至少20个不同的点,我正在寻找一种“颜色生成器”来循环它。
答案 0 :(得分:5)
以下方法将创建一个颜色列表,只要您的数据帧,然后使用每种颜色的标签绘制一个点:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
import numpy as np
import pandas as pd
fig, ax = plt.subplots()
df = pd.DataFrame({'n1':[1,2,1,3], 'n2':[1,3,2,1], 'l':['a','b','c','d']})
colormap = cm.viridis
colorlist = [colors.rgb2hex(colormap(i)) for i in np.linspace(0, 0.9, len(df['l']))]
for i,c in enumerate(colorlist):
x = df['n1'][i]
y = df['n2'][i]
l = df['l'][i]
ax.scatter(x, y, label=l, s=50, linewidth=0.1, c=c)
ax.legend()
plt.show()
答案 1 :(得分:2)
这个怎么样,
这是源代码,
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from matplotlib import cm
fig, ax = plt.subplots()
df = pd.DataFrame({'n1':[1,2,1,3], 'n2':[1,3,2,1], 'l':['a','b','c','d']})
#colors = ['b','r','c','y']
nrof_labels = len(df['l'])
colors = cm.rainbow(np.linspace(0, 1, nrof_labels)) # create a bunch of colors
for i, r in df.iterrows():
ax.plot(r['n1'], r['n2'], 'o', markersize=10, color=colors[i], linewidth=0.1, label=r['l'])
ax.set_xlim(0.5, 3.5)
ax.set_ylim(0.5, 3.5)
plt.legend(loc='best')
plt.show()
答案 2 :(得分:2)
IIUC你可以这样做:
import matplotlib.pyplot as plt
from matplotlib import colors
import pandas as pd
colorlist = list(colors.ColorConverter.colors.keys())
fig, ax = plt.subplots()
[df.iloc[[i]].plot.scatter('n1', 'n2', ax=ax, s=50, label=l,
color=colorlist[i % len(colorlist)])
for i,l in enumerate(df.l)]
colorlist:
In [223]: colorlist
Out[223]: ['m', 'b', 'g', 'r', 'k', 'y', 'c', 'w']
PS colorlist[i % len(colorlist)]
- 应始终保留在列表边界