我想并行运行一个函数,并使用joblib等待所有并行节点完成。就像在例子中一样:
from math import sqrt
from joblib import Parallel, delayed
Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in range(10))
但是,我希望执行将在单个进度条中看到,例如 tqdm ,显示已完成的作业数。
你会怎么做?
答案 0 :(得分:16)
只需将range(10)
放在tqdm(...)
内!对你来说这似乎太好了,但它确实有效(在我的机器上):
from math import sqrt
from joblib import Parallel, delayed
import multiprocessing
from tqdm import tqdm
result = Parallel(n_jobs=2)(delayed(sqrt)(i ** 2) for i in tqdm(range(100000)))
答案 1 :(得分:7)
如果您的问题包含许多部分,您可以将部分拆分为k
个子组,并行运行每个子组并更新其间的进度条,从而导致k
更新进度。
以下示例从文档中对此进行了演示。
>>> with Parallel(n_jobs=2) as parallel:
... accumulator = 0.
... n_iter = 0
... while accumulator < 1000:
... results = parallel(delayed(sqrt)(accumulator + i ** 2)
... for i in range(5))
... accumulator += sum(results) # synchronization barrier
... n_iter += 1
https://pythonhosted.org/joblib/parallel.html#reusing-a-pool-of-workers
答案 2 :(得分:7)
我创建了pqdm带有并行期货的并行tqdm包装器,以轻松完成此操作,请尝试一下!
要安装
pip install pqdm
并使用
from pqdm.processes import pqdm
# If you want threads instead:
# from pqdm.threads import pqdm
args = [1, 2, 3, 4, 5]
# args = range(1,6) would also work
def square(a):
return a*a
result = pqdm(args, square, n_jobs=2)
答案 3 :(得分:6)
这是可能的解决方法
def func(x):
time.sleep(random.randint(1, 10))
return x
def text_progessbar(seq, total=None):
step = 1
tick = time.time()
while True:
time_diff = time.time()-tick
avg_speed = time_diff/step
total_str = 'of %n' % total if total else ''
print('step', step, '%.2f' % time_diff,
'avg: %.2f iter/sec' % avg_speed, total_str)
step += 1
yield next(seq)
all_bar_funcs = {
'tqdm': lambda args: lambda x: tqdm(x, **args),
'txt': lambda args: lambda x: text_progessbar(x, **args),
'False': lambda args: iter,
'None': lambda args: iter,
}
def ParallelExecutor(use_bar='tqdm', **joblib_args):
def aprun(bar=use_bar, **tq_args):
def tmp(op_iter):
if str(bar) in all_bar_funcs.keys():
bar_func = all_bar_funcs[str(bar)](tq_args)
else:
raise ValueError("Value %s not supported as bar type"%bar)
return Parallel(**joblib_args)(bar_func(op_iter))
return tmp
return aprun
aprun = ParallelExecutor(n_jobs=5)
a1 = aprun(total=25)(delayed(func)(i ** 2 + j) for i in range(5) for j in range(5))
a2 = aprun(total=16)(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
a2 = aprun(bar='txt')(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
a2 = aprun(bar=None)(delayed(func)(i ** 2 + j) for i in range(4) for j in range(4))
答案 4 :(得分:4)
如上所述,仅包装传递给joblib.Parallel()
的可迭代项的解决方案并不能真正监视执行进度。相反,我建议将Parallel
子类化并覆盖print_progress()
方法,如下所示:
import joblib
from tqdm.auto import tqdm
class ProgressParallel(joblib.Parallel):
def __call__(self, *args, **kwargs):
with tqdm() as self._pbar:
return joblib.Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()
答案 5 :(得分:4)
修改nth's great answer,以允许动态标志使用或不使用TQDM,并提前指定总数,以便状态栏正确填写。
from tqdm.auto import tqdm
from joblib import Parallel
class ProgressParallel(Parallel):
def __init__(self, use_tqdm=True, total=None, *args, **kwargs):
self._use_tqdm = use_tqdm
self._total = total
super().__init__(*args, **kwargs)
def __call__(self, *args, **kwargs):
with tqdm(disable=not self._use_tqdm, total=self._total) as self._pbar:
return Parallel.__call__(self, *args, **kwargs)
def print_progress(self):
if self._total is None:
self._pbar.total = self.n_dispatched_tasks
self._pbar.n = self.n_completed_tasks
self._pbar.refresh()