答案 0 :(得分:0)
<强>解释强>
此问题与following question类似。我的答案将与我的答案类似,并进行相关修改。
我们希望找到最符合给定形状的平行四边形角。 可以通过优化找到解决方案,如下所示:
找到形状的4个角的初始猜测。这可以通过找到曲率最高的边界点来完成,并使用kmean聚类将它们聚类成4组。
通过在每对相应角之间画一条线,给出这4个角创建一个平行四边形。
找到优化边界图像的Jaccard系数和生成的平行四边形图的角落。
优化将在每个角落进行,以便节省时间。
<强>结果
初始角落猜测(角落标记为蓝色)
最终结果:
<强>代码强>
主脚本
%reads image and binarize it
I = rgb2gray(imread('eA4ci.jpg')) > 50;
%finds boundry of largerst connected component
boundries = bwboundaries(I,8);
numPixels = cellfun(@length,boundries);
[~,idx] = max(numPixels);
B = boundries{idx};
%finds best 4 corners
[ corners ] = optimizeCorners(B);
%generate line mask given these corners, fills the result
linesMask = drawLines(size(I),corners,corners([2:4,1],:));
rectMask = imfill(linesMask,'holes');
%remove biggest CC from image, adds linesMask instead
CC = bwconncomp(I,8);
numPixels = cellfun(@numel,CC.PixelIdxList);
[~,idx] = max(numPixels);
res = I;
res(CC.PixelIdxList{idx}) = 0;
res = res | rectMask;
优化角落功能:
function [ corners] = optimizeCorners(xy)
%finds the corners which fits the most for this set of points
Y = xy(:,1);
X = xy(:,2);
%initial corners guess
corners = getInitialCornersGuess(xy);
boundriesIm = zeros(max(Y)+20,max(X)+20);
boundriesIm(sub2ind(size(boundriesIm),xy(:,1),xy(:,2))) = 1;
%R represents the search radius
R = 7;
%continue optimizing as long as there is no change in the final result
unchangedIterations = 0;
while unchangedIterations<4
for ii=1:4
%optimize corner ii
currentCorner = corners(ii,:);
bestCorner = currentCorner;
bestRes = calcEnergy(boundriesIm,corners);
cornersToEvaluate = corners;
for yy=currentCorner(1)-R:currentCorner(1)+R
for xx=currentCorner(2)-R:currentCorner(2)+R
cornersToEvaluate(ii,:) = [yy,xx];
res = calcEnergy(boundriesIm,cornersToEvaluate);
if res > bestRes
bestRes = res;
bestCorner = [yy,xx];
end
end
end
if isequal(bestCorner,currentCorner)
unchangedIterations = unchangedIterations + 1;
else
unchangedIterations = 0;
corners(ii,:) = bestCorner;
end
end
end
end
function res = calcEnergy(boundriesIm,corners)
%calculates the score of the corners list, given the boundries image.
%the result is acutally the jaccard index of the boundries map and the
%lines map
linesMask = drawLines(size(boundriesIm),corners,corners([2:4,1],:));
res = sum(sum(linesMask&boundriesIm)) / sum(sum(linesMask|boundriesIm));
end
获得初始角落功能:
function corners = getInitialCornersGuess(boundryPnts)
%calculates an initial guess for the 4 corners
%finds corners by performing kmeans on largest curvature pixels
[curvatureArr] = calcCurvature(boundryPnts, 5);
highCurv = boundryPnts(curvatureArr>0.3,:);
[~,C] = kmeans([highCurv(:,1),highCurv(:,2)],4);
%sorts the corners from top to bottom - preprocessing stage
C = int16(C);
corners = zeros(size(C));
%top left corners
topLeftInd = find(sum(C,2)==min(sum(C,2)));
corners(1,:) = C(topLeftInd,:);
%bottom right corners
bottomRightInd = find(sum(C,2)==max(sum(C,2)));
corners(3,:) = C(bottomRightInd,:);
%top right and bottom left corners
C([topLeftInd,bottomRightInd],:) = [];
topRightInd = find(C(:,2)==max(C(:,2)));
corners(4,:) = C(topRightInd,:);
bottomLeftInd = find(C(:,2)==min(C(:,2)));
corners(2,:) = C(bottomLeftInd,:);
end
function [curvatureArr] = calcCurvature(xy, halfWinSize)
%calculate the curvature of a list of points (xy) given a window size
%curvature calculation
curvatureArr = zeros(size(xy,1),1);
for t=1:halfWinSize
y = xy(t:halfWinSize:end,1);
x = xy(t:halfWinSize:end,2);
dx = gradient(x);
ddx = gradient(dx);
dy = gradient(y);
ddy = gradient(dy);
num = abs(dx .* ddy - ddx .* dy) + 0.000001;
denom = dx .* dx + dy .* dy + 0.000001;
denom = sqrt(denom);
denom = denom .* denom .* denom;
curvature = num ./ denom;
%normalizing
if(max(curvature) > 0)
curvature = curvature / max(curvature);
end
curvatureArr(t:halfWinSize:end) = curvature;
end
end
绘制线条功能:
function mask = drawLines(imgSize, P1, P2)
%generates a mask with lines, determine by P1 and P2 points
mask = zeros(imgSize);
P1 = double(P1);
P2 = double(P2);
for ii=1:size(P1,1)
x1 = P1(ii,2); y1 = P1(ii,1);
x2 = P2(ii,2); y2 = P2(ii,1);
% Distance (in pixels) between the two endpoints
nPoints = ceil(sqrt((x2 - x1).^2 + (y2 - y1).^2));
% Determine x and y locations along the line
xvalues = round(linspace(x1, x2, nPoints));
yvalues = round(linspace(y1, y2, nPoints));
% Replace the relevant values within the mask
mask(sub2ind(size(mask), yvalues, xvalues)) = 1;
end