带有RFECV的KNN返回:"分类器不会暴露" coef _"或" feature_importances _"属性"

时间:2016-06-12 23:34:48

标签: python machine-learning scikit-learn

我正在尝试在KNeighborsClassifier上应用RFECV以消除无关紧要的功能。为了使问题可重复,以下是虹膜数据的示例:

from sklearn.datasets import load_iris
from sklearn.feature_selection import RFECV
from sklearn.neighbors import KNeighborsClassifier
iris = load_iris()
y = iris.target
X = iris.data
estimator = KNeighborsClassifier()
selector = RFECV(estimator, step=1, cv=5)
selector = selector.fit(X, y)

导致以下错误按摩:

---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-27-19f0f2f0f0e7> in <module>()
      7 estimator = KNeighborsClassifier()
      8 selector = RFECV(estimator, step=1, cv=5)
----> 9 selector.fit(X, y)

C:...\Anaconda3\lib\site-packages\sklearn\feature_selection\rfe.py in fit(self, X, y)
    422                       verbose=self.verbose - 1)
    423 
--> 424             rfe._fit(X_train, y_train, lambda estimator, features:
    425                      _score(estimator, X_test[:, features], y_test, scorer))
    426             scores.append(np.array(rfe.scores_[::-1]).reshape(1, -1))

C:...\Anaconda3\lib\site-packages\sklearn\feature_selection\rfe.py in _fit(self, X, y, step_score)
    180                 coefs = estimator.feature_importances_
    181             else:
--> 182                 raise RuntimeError('The classifier does not expose '
    183                                    '"coef_" or "feature_importances_" '
    184                                    'attributes')

RuntimeError: The classifier does not expose "coef_" or "feature_importances_" attributes

如果我将分类器更改为SVC:

from sklearn.datasets import load_iris
from sklearn.feature_selection import RFECV
from sklearn.svm import SVC
iris = load_iris()
y = iris.target
X = iris.data
estimator = SVC(kernel="linear")
selector = RFECV(estimator, step=1, cv=5)
selector = selector.fit(X, y)

它会正常工作。有关如何解决问题的任何建议?

注意:我昨天更新了Anaconda,并更新了sklearn。

2 个答案:

答案 0 :(得分:1)

错误是非常自我解释的 - knn不提供进行特征选择的逻辑。您不能使用它(sklearn的实现)来实现这样的目标,除非您为KNN定义自己的特征重要性度量。据我所知 - 没有这样的一般性对象,所以 - scikit-learn没有实现它。另一方面,SVM与每个线性模型一样 - 提供此类信息。

答案 1 :(得分:1)