我有以下最小代码太慢了。对于我需要的1000行,大约需要2分钟。我需要它跑得更快。
import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0,1000,size=(1000, 4)), columns=list('ABCD'))
start_algorithm = time.time()
myunique = df['D'].unique()
for i in myunique:
itemp = df[df['D'] == i]
for j in myunique:
jtemp = df[df['D'] == j]
我知道numpy可以让它运行得更快,但请记住,我想保留原始数据帧(或numpy中的数组)的一部分,以获得列' D'的特定值。如何改善其表现?
答案 0 :(得分:4)
避免多次计算子数据框df[df['D'] == i]
。原始代码计算此len(myunique)**2
次。相反,您可以为每个i
计算一次(即总共len(myunique)
次),存储结果,然后将它们配对。例如,
groups = [grp for di, grp in df.groupby('D')]
for itemp, jtemp in IT.product(groups, repeat=2):
pass
import pandas as pd
import itertools as IT
df = pd.DataFrame(np.random.randint(0,1000,size=(1000, 4)), columns=list('ABCD'))
def using_orig():
myunique = df['D'].unique()
for i in myunique:
itemp = df[df['D'] == i]
for j in myunique:
jtemp = df[df['D'] == j]
def using_groupby():
groups = [grp for di, grp in df.groupby('D')]
for itemp, jtemp in IT.product(groups, repeat=2):
pass
In [28]: %timeit using_groupby()
10 loops, best of 3: 63.8 ms per loop
In [31]: %timeit using_orig()
1 loop, best of 3: 2min 22s per loop
关于评论:
我可以轻松地用a = 1替换itemp和jtemp,或者打印“Hello”,所以忽略
上面的答案解决了如何更有效地计算itemp
和jtemp
的问题。如果itemp
和jtemp
不是您实际计算的核心,那么我们需要更好地理解您真正想要计算的内容,以便建议(如果可能)一种方式更快地计算它。
答案 1 :(得分:1)
以下是基于"D"
列中的唯一元素形成组的矢量化方法 -
# Sort the dataframe based on the sorted indices of column 'D'
df_sorted = df.iloc[df['D'].argsort()]
# In the sorted dataframe's 'D' column find the shift/cut indces
# (places where elements change values, indicating change of groups).
# Cut the dataframe at those indices for the final groups with NumPy Split.
cut_idx = np.where(np.diff(df_sorted['D'])>0)[0]+1
df_split = np.split(df_sorted,cut_idx)
样本测试
1]使用随机元素形成示例数据框:
>>> df = pd.DataFrame(np.random.randint(0,100,size=(5, 4)), columns=list('ABCD'))
>>> df
A B C D
0 68 68 90 39
1 53 99 20 85
2 64 76 21 19
3 90 91 32 36
4 24 9 89 19
2]运行原始代码并打印结果:
>>> myunique = df['D'].unique()
>>> for i in myunique:
... itemp = df[df['D'] == i]
... print itemp
...
A B C D
0 68 68 90 39
A B C D
1 53 99 20 85
A B C D
2 64 76 21 19
4 24 9 89 19
A B C D
3 90 91 32 36
3]运行建议的代码并打印结果:
>>> df_sorted = df.iloc[df['D'].argsort()]
>>> cut_idx = np.where(np.diff(df_sorted['D'])>0)[0]+1
>>> df_split = np.split(df_sorted,cut_idx)
>>> for split in df_split:
... print split
...
A B C D
2 64 76 21 19
4 24 9 89 19
A B C D
3 90 91 32 36
A B C D
0 68 68 90 39
A B C D
1 53 99 20 85