pandas df.loc [z,x] = y如何提高速度?

时间:2016-06-10 22:14:17

标签: python pandas optimization

我已经确定了一个pandas命令

timeseries.loc[z, x] = y

负责迭代中花费的大部分时间。现在我正在寻找更好的方法来加速它。循环覆盖甚至不是50k元素(生产目标是〜250k或更多),但已经需要一个悲伤的20秒。

这是我的代码(忽略上半部分,它只是时间助手)

def populateTimeseriesTable(df, observable, timeseries):
    """
    Go through all rows of df and 
    put the observable into the timeseries 
    at correct row (symbol), column (tsMean).
    """

    print "len(df.index)=", len(df.index)  # show number of rows

    global bf, t
    bf = time.time()                       # set 'before' to now
    t = dict([(i,0) for i in range(5)])    # fill category timing with zeros

    def T(i):
        """
        timing helper: Add passed time to category 'i'. Then set 'before' to now.
        """
        global bf, t 
        t[i] = t[i] + (time.time()-bf)
        bf = time.time()        

    for i in df.index:             # this is the slow loop
        bf = time.time()

        sym = df["symbol"][i]
        T(0)

        tsMean = df["tsMean"][i]
        T(1)

        tsMean = tsFormatter(tsMean)
        T(2)

        o = df[observable][i]
        T(3)

        timeseries.loc[sym, tsMean] = o
        T(4)

    from pprint import pprint
    print "times needed (total = %.1f seconds) for each command:" % sum(t.values())
    pprint (t)

    return timeseries

有(不重要,不慢)

def tsFormatter(ts):
    "as human readable string, only up to whole seconds"
    return time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime(ts))

- > 待优化代码位于for循环中。

(T和t只是辅助函数& dict,用于计时。)

我已经计划好每一步。绝大多数时间:

len(df.index)= 47160
times needed (total = 20.2 seconds) for each command:
{0: 1.102,
 1: 0.741,
 2: 0.243,
 3: 0.792,
 4: 17.371}

在最后一步花费

timeseries.loc[sym, tsMean] = o

我已经下载并安装了 pypy - 但遗憾的是,它还没有支持pandas。

如何加快填充2D数组的想法?

谢谢!

编辑:对不起,没有提到 - '时间序列'也是一个数据框:

timeseries = pd.DataFrame({"name": titles}, index=index)

3 个答案:

答案 0 :(得分:11)

更新:从Pandas 0.20.1 the .ix indexer is deprecated, in favor of the more strict .iloc and .loc indexers开始。

=============================================== ======================

@jezrael提供了一个有趣的比较,我决定使用更多索引方法和10M行DF重复它(实际上在这种特殊情况下,大小并不重要):

设置:

In [15]: df = pd.DataFrame(np.random.rand(10**7, 5), columns=list('abcde'))

In [16]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 5 columns):
a    float64
b    float64
c    float64
d    float64
e    float64
dtypes: float64(5)
memory usage: 381.5 MB

In [17]: df.shape
Out[17]: (10000000, 5)

定时:

In [37]: %timeit df.loc[random.randint(0, 10**7), 'b']
1000 loops, best of 3: 502 µs per loop

In [38]: %timeit df.iloc[random.randint(0, 10**7), 1]
1000 loops, best of 3: 394 µs per loop

In [39]: %timeit df.at[random.randint(0, 10**7), 'b']
10000 loops, best of 3: 66.8 µs per loop

In [41]: %timeit df.iat[random.randint(0, 10**7), 1]
10000 loops, best of 3: 32.9 µs per loop

In [42]: %timeit df.ix[random.randint(0, 10**7), 'b']
10000 loops, best of 3: 64.8 µs per loop

In [43]: %timeit df.ix[random.randint(0, 10**7), 1]
1000 loops, best of 3: 503 µs per loop

结果作为条形图:

enter image description here

将数据定时为DF:

In [88]: r
Out[88]:
       method  timing
0         loc   502.0
1        iloc   394.0
2          at    66.8
3         iat    32.9
4    ix_label    64.8
5  ix_integer   503.0

In [89]: r.to_dict()
Out[89]:
{'method': {0: 'loc',
  1: 'iloc',
  2: 'at',
  3: 'iat',
  4: 'ix_label',
  5: 'ix_integer'},
 'timing': {0: 502.0,
  1: 394.0,
  2: 66.799999999999997,
  3: 32.899999999999999,
  4: 64.799999999999997,
  5: 503.0}}

绘图

ax = sns.barplot(data=r, x='method', y='timing')
ax.tick_params(labelsize=16)
[ax.annotate(str(round(p.get_height(),2)), (p.get_x() + 0.2, p.get_height() + 5)) for p in ax.patches]
ax.set_xlabel('indexing method', size=20)
ax.set_ylabel('timing (microseconds)', size=20)

答案 1 :(得分:6)

我一直认为at是最快的,但不是。 ix速度更快:

@

编辑:

我尝试MaxU import pandas as pd df = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9], 'D':[1,3,5], 'E':[5,3,6], 'F':[7,4,3]}) print (df) A B C D E F 0 1 4 7 1 5 7 1 2 5 8 3 3 4 2 3 6 9 5 6 3 print (df.at[2, 'B']) 6 print (df.ix[2, 'B']) 6 print (df.loc[2, 'B']) 6 In [77]: %timeit df.at[2, 'B'] 10000 loops, best of 3: 44.6 µs per loop In [78]: %timeit df.ix[2, 'B'] 10000 loops, best of 3: 40.7 µs per loop In [79]: %timeit df.loc[2, 'B'] 1000 loops, best of 3: 681 µs per loop 并导致差异df功能:

random.randint

答案 2 :(得分:0)

如果要在循环内添加行,请考虑这些性能问题;对于大约前1000到2000个记录,“my_df.loc”性能更好,并且通过增加循环中的记录数逐渐变慢。

如果你计划在一个大循环内(比如10M记录左右),你最好使用“iloc”和“append”的混合物;使用iloc填充临时数据帧,直到大小达到1000左右,然后将其附加到原始数据帧,并使用临时数据帧。这会使你的表现提高10倍