根据单独数组中的标签求和numpy数组值

时间:2016-06-10 21:43:16

标签: python numpy

我有类似以下的数组:

a=[["tennis","tennis","golf","federer","cricket"],
   ["federer","nadal","woods","sausage","federer"],
   ["sausage","lion","prawn","prawn","sausage"]]

然后我有一个以下权重的矩阵

w=[[1,3,3,4,5],
   [2,3,2,3,4],
   [1,2,1,1,1]]

我当时要做的是根据每行的矩阵a的标签对权重求和,并从该行中取出前3个标签。所以最后我想要这样的事情:

res=[["cricket","tennis","federer"],
     ["federer","sausage","nadal"],
     ["lion","sausage","prawn"]]

在我的实际数据集中,关系是非常不可能的,并不是真正的问题,也适用于整个行的情况:

["federer","federer","federer","federer","federer"]

理想情况下,我希望将此作为返回     [ “费德勒”, “”, “”]。

任何指导都将不胜感激。

3 个答案:

答案 0 :(得分:3)

有关numpy数组的信息,请参阅piRSquared answer

这是一种纯粹的python方法:

for i in range(4):
    if a[i].count(a[i][0]) == len(a[i]):
        res = [a[1][0], "", ""]
    else:
        res = [x[0] for x in sorted(zip(a[i], w[i]), key=lambda c: c[1], reverse=True)[:3]]

    print(res)

答案 1 :(得分:2)

尝试:

print pd.DataFrame(
    {i: a.loc[i, row.sort_values(ascending=False).index[:3]].values for i, row in w.iterrows()}
).T

         0        1      2
0  cricket  federer   golf
1  federer  sausage  nadal
2     lion  sausage  prawn

答案 2 :(得分:1)

我设法使用以下代码让它工作:

def myf(a,w):

    lookupTable, indexed_dataSet = np.unique(a, return_inverse=True)
    y= np.bincount(indexed_dataSet,w)
    lookupTable[y.argsort()]
    res=(lookupTable[y.argsort()][::-1][:3])
    ret=np.empty((3))
    ret.fill(res[-1])
    ret[0:res.shape[0]]=res
    return ret

result = np.empty_like(knearest_labels[:,0:3])
for i,(x,y) in enumerate(zip(a,w)):
    result[i] = myf(x,y)