我想描述我的Python代码。我很清楚cProfile
,我使用它,但它太低了。 (例如,甚至没有一种简单的方法可以从您正在分析的函数中捕获返回值。)
我想做的事情之一:我想在我的程序中使用一个函数,并在运行程序时将其设置为动态。
例如,假设我的程序中有一个函数heavy_func
。我想启动该程序并让heavy_func
函数不自行配置。但是在我的程序运行期间的某个时候,我希望在运行时将heavy_func
更改为自我配置文件。 (如果你想知道如何在程序运行时操作东西:我可以从调试探针或集成到我的GUI应用程序的shell中完成它。)
是否已经编写了一个类似这样的模块?我可以自己写,但我之前想问,所以我不会重新发明轮子。
答案 0 :(得分:1)
这可能有点令人费解,但this technique应该可以帮助您找到“瓶颈”,这就是您想要做的事情。 你非常确定你想要关注的例程。 如果那是你需要关注的例行程序,它将证明你是对的。 如果真正的问题在其他地方,它会告诉你它们在哪里。
如果您需要一系列繁琐的原因,look here。
答案 1 :(得分:0)
我为它编写了自己的模块。我叫它cute_profile
。 Here is the code。 Here are the tests
Here is the blog post explaining how to use it.
这是GarlicSim的一部分,因此如果您想使用它,您可以install garlicsim
并执行from garlicsim.general_misc import cute_profile
。
如果要在Python 3代码上使用它,只需安装Python 3 fork of garlicsim
。
以下是代码中过时的摘录:
import functools
from garlicsim.general_misc import decorator_tools
from . import base_profile
def profile_ready(condition=None, off_after=True, sort=2):
'''
Decorator for setting a function to be ready for profiling.
For example:
@profile_ready()
def f(x, y):
do_something_long_and_complicated()
The advantages of this over regular `cProfile` are:
1. It doesn't interfere with the function's return value.
2. You can set the function to be profiled *when* you want, on the fly.
How can you set the function to be profiled? There are a few ways:
You can set `f.profiling_on=True` for the function to be profiled on the
next call. It will only be profiled once, unless you set
`f.off_after=False`, and then it will be profiled every time until you set
`f.profiling_on=False`.
You can also set `f.condition`. You set it to a condition function taking
as arguments the decorated function and any arguments (positional and
keyword) that were given to the decorated function. If the condition
function returns `True`, profiling will be on for this function call,
`f.condition` will be reset to `None` afterwards, and profiling will be
turned off afterwards as well. (Unless, again, `f.off_after` is set to
`False`.)
`sort` is an `int` specifying which column the results will be sorted by.
'''
def decorator(function):
def inner(function_, *args, **kwargs):
if decorated_function.condition is not None:
if decorated_function.condition is True or \
decorated_function.condition(
decorated_function.original_function,
*args,
**kwargs
):
decorated_function.profiling_on = True
if decorated_function.profiling_on:
if decorated_function.off_after:
decorated_function.profiling_on = False
decorated_function.condition = None
# This line puts it in locals, weird:
decorated_function.original_function
base_profile.runctx(
'result = '
'decorated_function.original_function(*args, **kwargs)',
globals(), locals(), sort=decorated_function.sort
)
return locals()['result']
else: # decorated_function.profiling_on is False
return decorated_function.original_function(*args, **kwargs)
decorated_function = decorator_tools.decorator(inner, function)
decorated_function.original_function = function
decorated_function.profiling_on = None
decorated_function.condition = condition
decorated_function.off_after = off_after
decorated_function.sort = sort
return decorated_function
return decorator