我试图找出最大(First_Word, Group)
对
import pandas as pd
df = pd.DataFrame({'First_Word': ['apple', 'apple', 'orange', 'apple', 'pear'],
'Group': ['apple bins', 'apple trees', 'orange juice', 'apple trees', 'pear tree'],
'Text': ['where to buy apple bins', 'i see an apple tree', 'i like orange juice',
'apple fell out of the tree', 'partrige in a pear tree']},
columns=['First_Word', 'Group', 'Text'])
First_Word Group Text
0 apple apple bins where to buy apple bins
1 apple apple trees i see an apple tree
2 orange orange juice i like orange juice
3 apple apple trees apple fell out of the tree
4 pear pear tree partrige in a pear tree
然后我做groupby
:
grouped = df.groupby(['First_Word', 'Group']).count()
Text
First_Word Group
apple apple bins 1
apple trees 2
orange orange juice 1
pear pear tree 1
我现在想要将其过滤到只有最大Text
计数的唯一索引行。您已经删除了apple bins
,因为apple trees
具有最大值。
Text
First_Word Group
apple apple trees 2
orange orange juice 1
pear pear tree 1
这个max value of group问题类似,但是当我尝试这样的事情时:
df.groupby(["First_Word", "Group"]).count().apply(lambda t: t[t['Text']==t['Text'].max()])
我收到错误:KeyError: ('Text', 'occurred at index Text')
。如果我将axis=1
添加到apply
,我会IndexError: ('index out of bounds', 'occurred at index (apple, apple bins)')
答案 0 :(得分:2)
鉴于grouped
,您现在希望按First Word
索引级别进行分组,并找到每个组的最大行的索引标签(使用idxmax
):
In [39]: grouped.groupby(level='First_Word')['Text'].idxmax()
Out[39]:
First_Word
apple (apple, apple trees)
orange (orange, orange juice)
pear (pear, pear tree)
Name: Text, dtype: object
然后,您可以使用grouped.loc
按索引标签从grouped
中选择行:
import pandas as pd
df = pd.DataFrame(
{'First_Word': ['apple', 'apple', 'orange', 'apple', 'pear'],
'Group': ['apple bins', 'apple trees', 'orange juice', 'apple trees', 'pear tree'],
'Text': ['where to buy apple bins', 'i see an apple tree', 'i like orange juice',
'apple fell out of the tree', 'partrige in a pear tree']},
columns=['First_Word', 'Group', 'Text'])
grouped = df.groupby(['First_Word', 'Group']).count()
result = grouped.loc[grouped.groupby(level='First_Word')['Text'].idxmax()]
print(result)
产量
Text
First_Word Group
apple apple trees 2
orange orange juice 1
pear pear tree 1