我有一个火花应用程序。我使用saveAsNewAPIHadoopDataset
使用AvroKeyOutputFormat
在hdfs上存储rdd。
对于大型RDD,有时我得到了很多ClosedChannelException
,应用程序最终会中止。
我在某处读到设置hadoopConf.set("fs.hdfs.impl.disable.cache", "false");
有帮助。
以下是我如何保存我的rdd:
hadoopConf.set("fs.hdfs.impl.disable.cache", "false");
final Job job = Job.getInstance(hadoopConf);
FileOutputFormat.setOutputPath(job, outPutPath);
AvroJob.setOutputKeySchema(job, MyClass.SCHEMA$);
job.setOutputFormatClass(AvroKeyOutputFormat.class);
rdd
.mapToPair(new PreparePairForDatnum())
.saveAsNewAPIHadoopDataset(job.getConfiguration());
这是堆栈跟踪:
java.nio.channels.ClosedChannelException
at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1765)
at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:108)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.avro.file.DataFileWriter$BufferedFileOutputStream$PositionFilter.write(DataFileWriter.java:458)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:121)
at org.apache.avro.io.BufferedBinaryEncoder$OutputStreamSink.innerWrite(BufferedBinaryEncoder.java:216)
at org.apache.avro.io.BufferedBinaryEncoder.writeFixed(BufferedBinaryEncoder.java:150)
at org.apache.avro.file.DataFileStream$DataBlock.writeBlockTo(DataFileStream.java:369)
at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:395)
at org.apache.avro.file.DataFileWriter.writeIfBlockFull(DataFileWriter.java:340)
at org.apache.avro.file.DataFileWriter.append(DataFileWriter.java:311)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.write(AvroKeyRecordWriter.java:77)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.write(AvroKeyRecordWriter.java:39)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply$mcV$sp(PairRDDFunctions.scala:1036)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1034)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$4.apply(PairRDDFunctions.scala:1034)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1206)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1042)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12.apply(PairRDDFunctions.scala:1014)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Suppressed: java.nio.channels.ClosedChannelException
at org.apache.hadoop.hdfs.DFSOutputStream.checkClosed(DFSOutputStream.java:1765)
at org.apache.hadoop.fs.FSOutputSummer.write(FSOutputSummer.java:108)
at org.apache.hadoop.fs.FSDataOutputStream$PositionCache.write(FSDataOutputStream.java:58)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.avro.file.DataFileWriter$BufferedFileOutputStream$PositionFilter.write(DataFileWriter.java:458)
at java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
at java.io.BufferedOutputStream.write(BufferedOutputStream.java:121)
at org.apache.avro.io.BufferedBinaryEncoder$OutputStreamSink.innerWrite(BufferedBinaryEncoder.java:216)
at org.apache.avro.io.BufferedBinaryEncoder.writeFixed(BufferedBinaryEncoder.java:150)
at org.apache.avro.file.DataFileStream$DataBlock.writeBlockTo(DataFileStream.java:369)
at org.apache.avro.file.DataFileWriter.writeBlock(DataFileWriter.java:395)
at org.apache.avro.file.DataFileWriter.sync(DataFileWriter.java:413)
at org.apache.avro.file.DataFileWriter.flush(DataFileWriter.java:422)
at org.apache.avro.file.DataFileWriter.close(DataFileWriter.java:445)
at org.apache.avro.mapreduce.AvroKeyRecordWriter.close(AvroKeyRecordWriter.java:83)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsNewAPIHadoopDataset$1$$anonfun$12$$anonfun$apply$5.apply$mcV$sp(PairRDDFunctions.scala:1043)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1215)
... 8 more
答案 0 :(得分:2)
执行者被杀时可能会发生这种情况。在你的日志中查找类似的东西:
2016-07-20 22:00:42,976 | WARN | org.apache.spark.scheduler.cluster.YarnSchedulerBackend$YarnSchedulerEndpoint | Container container_e10838_1468831508103_1724_01_055482 on host: hostName was preempted.
2016-07-20 22:00:42,977 | ERROR | org.apache.spark.scheduler.cluster.YarnClusterScheduler | Lost executor 6 on hostName: Container container_e10838_1468831508103_1724_01_055482 on host: hostName was preempted.
如果您发现任务执行者被纱线应用程序主人抢占。换句话说,他被杀了并获得了另一个运行队列。关于抢占和纱线安排可以找到here和here。