我有以下格式的字典列表
T
我只需要在python中创建一个像
一样的表[{'duration': 0.7, 'project_id': 3, 'resource': u'Arya Stark', 'activity': u'Development'},
{'duration': 0.9, 'project_id': 4, 'resource': u'Ned Stark', 'activity': u'Development'},
{'duration': 2.88, 'project_id': 7, 'resource': u'Robb Stark', 'activity': u'Development'},
{'duration': 0.22, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 0.3, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 2.15, 'project_id': 3, 'resource': u'Arya Stark', 'activity': u'Practise'},
{'duration': 3.35, 'project_id': 4, 'resource': u'Sansa Stark', 'activity': u'Development'},
{'duration': 2.17, 'project_id': 9, 'resource': u'Rickon Stark', 'activity': u'Development'},
{'duration': 1.03, 'project_id': 4, 'resource': u'Benjan Stark', 'activity': u'Design'},
{'duration': 1.77, 'project_id': 4, 'resource': u'Bran Stark', 'activity': u'Testing'},
{'duration': 1.17, 'project_id': 4, 'resource': u'Ned Stark', 'activity': u'Development'},
{'duration': 0.17, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 1.77, 'project_id': 3, 'resource': u'catelyn stark', 'activity': u'Development'},
{'duration': 0.3, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 0.45, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'}]
所以附表格式,
2)我们可以在字典数据中进行求和操作
答案 0 :(得分:10)
IIUC以下是使用pandas
的解决方案:
import pandas as pd
dict_data = [{'duration': 0.7, 'project_id': 3, 'resource': u'Arya Stark', 'activity': u'Development'},
{'duration': 0.9, 'project_id': 4, 'resource': u'Ned Stark', 'activity': u'Development'},
{'duration': 2.88, 'project_id': 7, 'resource': u'Robb Stark', 'activity': u'Development'},
{'duration': 0.22, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 0.3, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 2.15, 'project_id': 3, 'resource': u'Arya Stark', 'activity': u'Practise'},
{'duration': 3.35, 'project_id': 4, 'resource': u'Sansa Stark', 'activity': u'Development'},
{'duration': 2.17, 'project_id': 9, 'resource': u'Rickon Stark', 'activity': u'Development'},
{'duration': 1.03, 'project_id': 4, 'resource': u'Benjan Stark', 'activity': u'Design'},
{'duration': 1.77, 'project_id': 4, 'resource': u'Bran Stark', 'activity': u'Testing'},
{'duration': 1.17, 'project_id': 4, 'resource': u'Ned Stark', 'activity': u'Development'},
{'duration': 0.17, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 1.77, 'project_id': 3, 'resource': u'catelyn stark', 'activity': u'Development'},
{'duration': 0.3, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'},
{'duration': 0.45, 'project_id': 9, 'resource': u'Jon Snow', 'activity': u'Support'}]
df = pd.DataFrame(dict_data)
dfg = df.groupby(['project_id','resource','activity']).sum()
dfg.to_html('result.html')
会生成这样的HTML:
使用pandas
pivot_table
并使用不同结果的另一种解决方案:
import numpy as np
pvt = pd.pivot_table(df, values=['duration'],index=['project_id','resource'], columns=['activity'], aggfunc=np.sum,margins=True, fill_value=0)
pvt.to_html('result2.html')
明智地重新排列整个项目: 重新排列列和索引以获得所需的结果。
import numpy as np
pvt = pd.pivot_table(df, values=['duration'],index=['resource','activity'], columns=['project_id'], aggfunc=np.sum,margins=True, fill_value=0)