在FFT图中检测峰值

时间:2016-06-09 07:34:39

标签: python python-2.7 plot fft similarity

我想知道如何在Python中检测FFT图中的新峰值。 让我们说我有这个简单的情节:enter image description here 我想自动衡量“相似性”。或者在嘈杂的信号中的峰值位置,我试图使用余弦相似性,但我的真实信号太嘈杂,即使我在信号中添加了一个新的峰值,我仍然得到一个0.9的余弦,因为它&#39 ;只有一个高峰。 这是我的真实信号的一个例子,我也有一个问题,即我的信号可以在测量中被调整,所以我无法得到一个稳定的频率数组,它们可以在+/- 100 Hz的窗口内: enter image description here 这是用于第一个Plot的代码:

import numpy as np
from pylab import *
import scipy.fftpack

# Number of samplepoints
N = 600
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y1 = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)+ 0.7*np.sin(30.0 * 2.0*np.pi*x)+ 0.5*np.sin(10.0 * 2.0*np.pi*x)
y2 = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)+ 0.2*np.sin(60.0 * 2.0*np.pi*x)+ 0.4*np.sin(40.0 * 2.0*np.pi*x)
yf1 = scipy.fftpack.fft(y1)
yf2 = scipy.fftpack.fft(y2)
xf = np.linspace(0.0, 1.0/(2.0*T), N/2)

fig, ax = plt.subplots()
plot(xf, 2.0/N * np.abs(yf1[:N/2]))
plot(xf, 2.0/N * np.abs(yf2[:N/2]))
xlabel('Freq (Hz)',fontsize=16,weight='bold')
ylabel('|Y(freq)|',fontsize=16,weight='bold')
ax = gca()
fontsize = 14
for tick in ax.xaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')
for tick in ax.yaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')
grid(True)
show()
def cosine_similarity(v1,v2):
    "compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
    sumxx, sumxy, sumyy = 0, 0, 0
    for i in range(len(v1)):
        x = v1[i]; y = v2[i]
        sumxx += x*x
        sumyy += y*y
        sumxy += x*y
    return sumxy/math.sqrt(sumxx*sumyy)

print 'Cosine Similarity', cosine_similarity(2.0/N * np.abs(yf1[:N/2]),2.0/N * np.abs(yf2[:N/2]))

我也设置了阈值,但有时真实信号中的峰值可能小于预定义的阈值。 有什么想法吗?

1 个答案:

答案 0 :(得分:2)

有许多方法可以找到峰值,甚至可以插入其子样本位置。 获得峰值后,只需检查是否找到了新的峰值。

您可以使用peakutils包查找峰值。您可以设置峰值之间的阈值和最小距离。

import numpy as np
from pylab import *
import scipy.fftpack

# Number of samplepoints
N = 600
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N)
y1 = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)+ 0.7*np.sin(30.0 * 2.0*np.pi*x)+ 0.5*np.sin(10.0 * 2.0*np.pi*x)
y2 = np.sin(50.0 * 2.0*np.pi*x) + 0.5*np.sin(80.0 * 2.0*np.pi*x)+ 0.2*np.sin(60.0 * 2.0*np.pi*x)+ 0.4*np.sin(40.0 * 2.0*np.pi*x)
yf1 = scipy.fftpack.fft(y1)
yf2 = scipy.fftpack.fft(y2)
xf = np.linspace(0.0, 1.0/(2.0*T), N/2)

v1 = 2.0/N * np.abs(yf1[:N/2])
v2 = 2.0/N * np.abs(yf2[:N/2])

# Find peaks
import peakutils
peaks_ind1 = peakutils.indexes(v1, thres=0.2, min_dist=5)
peaks_ind2 = peakutils.indexes(v2, thres=0.2, min_dist=5)

dist_th_for_new_peaks = 3
new_peaks = []
for p in peaks_ind2:
    found_new_peak = np.all(np.abs(p - peaks_ind1) > dist_th_for_new_peaks)
    if found_new_peak:
        new_peaks.append(p)
        print("New Peak!! - %d" % p)

fig, ax = plt.subplots()
plot(xf, v1, color='blue')
plot(xf, v2, color='green')
for p in peaks_ind1:
    ax.scatter(xf[p], v1[p], s=40, marker='s', color='blue', label='v1')
for p in peaks_ind2:
    ax.scatter(xf[p], v2[p], s=40, marker='s', color='green', label='v2')    
for p in new_peaks:
    ax.scatter(xf[p], v2[p], s=40, marker='s', color='red', label='new peaks')        

xlabel('Freq (Hz)',fontsize=16,weight='bold')
ylabel('|Y(freq)|',fontsize=16,weight='bold')

ax = gca()
fontsize = 14
for tick in ax.xaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')
for tick in ax.yaxis.get_major_ticks():
    tick.label1.set_fontsize(fontsize)
    tick.label1.set_fontweight('bold')
ax.set_xlim([0,400])
ax.set_ylim([0,0.8])
grid(True)
show()

红色方块是绿色信号中的新峰: enter image description here