我是分布式tensorflow的新手。我在这里找到了这个分布式的mnist测试: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/dist_test/python/mnist_replica.py
但我不知道如何让它运行。我使用了以下脚本:
python distributed_mnist.py --num_workers=3 --num_parameter_servers=1 --worker_index=0 --worker_grpc_url="grpc://tf-worker0:2222"\
& python distributed_mnist.py --num_workers=3 --num_parameter_servers=1 --worker_index=1 --worker_grpc_url="grpc://tf-worker1:2222"\
& python distributed_mnist.py --num_workers=3 --num_parameter_servers=1 --worker_index=2 --worker_grpc_url="grpc://tf-worker2:2222"
我刚发现缺少这些参数,所以我将它们传递给程序。发生了什么:
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally
Extracting /tmp/mnist-data/train-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/train-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/train-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/train-labels-idx1-ubyte.gz
Extracting /tmp/mnist-data/t10k-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/train-labels-idx1-ubyte.gz
Extracting /tmp/mnist-data/train-labels-idx1-ubyte.gz
Extracting /tmp/mnist-data/t10k-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/t10k-images-idx3-ubyte.gz
Extracting /tmp/mnist-data/t10k-labels-idx1-ubyte.gz
Extracting /tmp/mnist-data/t10k-labels-idx1-ubyte.gz
Extracting /tmp/mnist-data/t10k-labels-idx1-ubyte.gz
Worker GRPC URL: grpc://tf-worker0:2222
Worker index = 0
Number of workers = 3
Worker GRPC URL: grpc://tf-worker2:2222
Worker index = 2
Number of workers = 3
Worker GRPC URL: grpc://tf-worker1:2222
Worker index = 1
Number of workers = 3
Worker 0: Initializing session...
Worker 2: Waiting for session to be initialized...
Worker 1: Waiting for session to be initialized...
E0608 20:37:13.514249023 7501 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:13.514287961 7501 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
E0608 20:37:13.548052986 7502 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:13.548091527 7502 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
E0608 20:37:13.555449386 7503 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:13.555473898 7503 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
^CE0608 20:37:28.517451603 7504 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:28.517491102 7504 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
E0608 20:37:28.551002331 7505 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:28.551029795 7505 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
E0608 20:37:28.556681378 7506 resolve_address_posix.c:126] getaddrinfo: Name or service not known
D0608 20:37:28.556709728 7506 dns_resolver.c:189] dns resolution failed: retrying in 15 seconds
任何人都知道如何正确运行它?非常感谢!
答案 0 :(得分:17)
命令行中--worker_grpc_url
标志的值是指不存在的地址。
此script旨在在特定的Kubernetes环境中运行,而不是独立运行。特别是tf-worker0:2222
,tf-worker1:2222
和tf-worker2:2222
是指由此测试的自动版本创建的Kubernetes容器的名称。作为独立测试,需要进行大量更改。
分布式TensorFlow的文档包括code for an example trainer program。在分布式TensorFlow上尝试MNIST的最简单方法是将模型粘贴到模板中。例如,类似下面的内容应该有效:
import math
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# Flags for defining the tf.train.ClusterSpec
tf.app.flags.DEFINE_string("ps_hosts", "",
"Comma-separated list of hostname:port pairs")
tf.app.flags.DEFINE_string("worker_hosts", "",
"Comma-separated list of hostname:port pairs")
# Flags for defining the tf.train.Server
tf.app.flags.DEFINE_string("job_name", "", "One of 'ps', 'worker'")
tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
tf.app.flags.DEFINE_integer("hidden_units", 100,
"Number of units in the hidden layer of the NN")
tf.app.flags.DEFINE_string("data_dir", "/tmp/mnist-data",
"Directory for storing mnist data")
tf.app.flags.DEFINE_integer("batch_size", 100, "Training batch size")
FLAGS = tf.app.flags.FLAGS
IMAGE_PIXELS = 28
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(
worker_device="/job:worker/task:%d" % FLAGS.task_index,
cluster=cluster)):
# Variables of the hidden layer
hid_w = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
stddev=1.0 / IMAGE_PIXELS), name="hid_w")
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
# Variables of the softmax layer
sm_w = tf.Variable(
tf.truncated_normal([FLAGS.hidden_units, 10],
stddev=1.0 / math.sqrt(FLAGS.hidden_units)),
name="sm_w")
sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS])
y_ = tf.placeholder(tf.float32, [None, 10])
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
hid = tf.nn.relu(hid_lin)
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
loss = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
global_step = tf.Variable(0)
train_op = tf.train.AdagradOptimizer(0.01).minimize(
loss, global_step=global_step)
saver = tf.train.Saver()
summary_op = tf.summary.merge_all()
init_op = tf.initialize_all_variables()
# Create a "supervisor", which oversees the training process.
sv = tf.train.Supervisor(is_chief=(FLAGS.task_index == 0),
logdir="/tmp/train_logs",
init_op=init_op,
summary_op=summary_op,
saver=saver,
global_step=global_step,
save_model_secs=600)
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
# The supervisor takes care of session initialization, restoring from
# a checkpoint, and closing when done or an error occurs.
with sv.managed_session(server.target) as sess:
# Loop until the supervisor shuts down or 1000000 steps have completed.
step = 0
while not sv.should_stop() and step < 1000000:
# Run a training step asynchronously.
# See `tf.train.SyncReplicasOptimizer` for additional details on how to
# perform *synchronous* training.
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
train_feed = {x: batch_xs, y_: batch_ys}
_, step = sess.run([train_op, global_step], feed_dict=train_feed)
if step % 100 == 0:
print "Done step %d" % step
# Ask for all the services to stop.
sv.stop()
if __name__ == "__main__":
tf.app.run()