这个问题是这个问题的延伸How to quickly export data from R to SQL Server。目前我使用以下代码:
# DB Handle for config file #
dbhandle <- odbcDriverConnect()
# save the data in the table finally
sqlSave(dbhandle, bp, "FACT_OP", append=TRUE, rownames=FALSE, verbose = verbose, fast = TRUE)
# varTypes <- c(Date="datetime", QueryDate = "datetime")
# sqlSave(dbhandle, bp, "FACT_OP", rownames=FALSE,verbose = TRUE, fast = TRUE, varTypes=varTypes)
# DB handle close
odbcClose(dbhandle)
我也尝试过这种方法,它工作得非常好,而且我也获得了很快的速度。
toSQL = data.frame(...);
write.table(toSQL,"C:\\export\\filename.txt",quote=FALSE,sep=",",row.names=FALSE,col.names=FALSE,append=FALSE);
sqlQuery(channel,"BULK
INSERT Yada.dbo.yada
FROM '\\\\<server-that-SQL-server-can-see>\\export\\filename.txt'
WITH
(
FIELDTERMINATOR = ',',
ROWTERMINATOR = '\\n'
)");
但我的问题是我不能在事务之间保持我的数据处于静止状态(因为数据安全性而无法将数据写入文件),所以我正在寻找解决方案,如果我可以直接从内存或缓存中批量插入数据。谢谢您的帮助。
答案 0 :(得分:1)
好问题 - 在无法以任何理由设置BULK INSERT
权限的情况下也很有用。
当我有足够的数据sqlSave
太慢但又不足以证明设置BULK INSERT
时,我把这个可怜人的解决方案扔了一会儿,所以它不需要任何写入文件的数据。 sqlSave
和参数化查询插入数据的速度非常慢的主要原因是每个行都插入了新的INSERT
语句。在下面的示例中,让R手动写INSERT
语句绕过这个:
library(RODBC)
channel <- ...
dataTable <- ...relevant data...
numberOfThousands <- floor(nrow(dataTable)/1000)
extra <- nrow(dataTable)%%1000
thousandInsertQuery <- function(channel,dat,range){
sqlQuery(channel,paste0("INSERT INTO Database.dbo.Responses (IDNum,State,Answer)
VALUES "
,paste0(
sapply(range,function(k) {
paste0("(",dat$IDNum[k],",'",
dat$State[k],"','",
gsub("'","''",dat$Answer[k],fixed=TRUE),"')")
})
,collapse=",")))
}
if(numberOfThousands)
for(n in 1:numberOfThousands)
{
thousandInsertQuery(channel,(1000*(n-1)+1):(1000*n),dataTable)
}
if(extra)
thousandInsertQuery(channel,(1000*numberOfThousands+1):(1000*numberOfThousands+extra))
使用值写出的SQL INSERT
语句一次最多只能接受1000行,因此这段代码将其分解为块(比一次一行更有效)。 / p>
显然必须自定义thousandInsertQuery
函数来处理数据框所具有的任何列 - 请注意字符/因子列周围有单引号和gsub
来处理任何单引号可能在字符列中。除此之外,没有针对SQL注入攻击的安全措施。
答案 1 :(得分:0)
建立在@ jpd527解决方案的基础上,我发现它确实值得深入研究...
require(RODBC)
channel <- #connection parameters
dbPath <- # path to your table, database.table
data <- # the DF you have prepared for insertion, /!\ beware of column names and values types...
# Function to insert 1000 rows of data in one sqlQuery call, coming from
# any DF and into any database.table
insert1000Rows <- function(channel, dbPath, data, range){
# Defines columns names for the database.table
columns <- paste(names(data), collapse = ", ")
# Initialize a string which will incorporate all 1000 rows of values
values <- ""
# Not very elegant, but appropriately builds the values (a, b, c...), (d, e, f...) into a string
for (i in range) {
for (j in 1:ncol(data)) {
# First column
if (j == 1) {
if (i == min(range)) {
# First row, only "("
values <- paste0(values, "(")
} else {
# Next rows, ",("
values <- paste0(values, ",(")
}
}
# Value Handling
values <- paste0(
values
# Handling NA values you want to insert as NULL values
, ifelse(is.na(data[i, j])
, "null"
# Handling numeric values you want to insert as INT
, ifelse(is.numeric(data[i, j])
, data[i, J]
# Else handling as character to insert as VARCHAR
, paste0("'", data[i, j], "'")
)
)
)
# Separator for columns
if (j == ncol(data)) {
# Last column, close parenthesis
values <- paste0(values, ")")
} else {
# Other columns, add comma
values <- paste0(values, ",")
}
}
}
# Once the string is built, insert it into SQL Server
sqlQuery(channel,paste0("insert into ", dbPath, " (", columns, ") values ", values))
}
此insert1000Rows
函数在下一个函数sqlInsertAll
的循环中使用,您只需为其定义要插入哪个DF到哪个database.table中即可。
# Main function which uses the insert1000rows function in a loop
sqlInsertAll <- function(channel, dbPath, data) {
numberOfThousands <- floor(nrow(data) / 1000)
extra <- nrow(data) %% 1000
if (numberOfThousands) {
for(n in 1:numberOfThousands) {
insert1000Rows(channel, dbPath, data, (1000 * (n - 1) + 1):(1000 * n))
print(paste0(n, "/", numberOfThousands))
}
}
if (extra) {
insert1000Rows(channel, dbPath, data, (1000 * numberOfThousands + 1):(1000 * numberOfThousands + extra))
}
}
这样,我可以在5分钟左右的时间内插入25万行数据,而使用RODBC软件包中的sqlSave
则花费了超过24小时。
答案 2 :(得分:-1)
使用DBI::dbWriteTable()
功能怎么样?
下面的示例(我将我的R代码连接到AWS RDS
的{{1}}实例):
MS SQL Express
对于传输的少量数据,它的工作速度非常快,如果你想要library(DBI)
library(RJDBC)
library(tidyverse)
# Specify where you driver lives
drv <- JDBC(
"com.microsoft.sqlserver.jdbc.SQLServerDriver",
"c:/R/SQL/sqljdbc42.jar")
# Connect to AWS RDS instance
conn <- drv %>%
dbConnect(
host = "jdbc:sqlserver://xxx.ccgqenhjdi18.ap-southeast-2.rds.amazonaws.com",
user = "xxx",
password = "********",
port = 1433,
dbname= "qlik")
if(0) { # check what the conn object has access to
queryResults <- conn %>%
dbGetQuery("select * from information_schema.tables")
}
# Create test data
example_data <- data.frame(animal=c("dog", "cat", "sea cucumber", "sea urchin"),
feel=c("furry", "furry", "squishy", "spiny"),
weight=c(45, 8, 1.1, 0.8))
# Works in 20ms in my case
system.time(
conn %>% dbWriteTable(
"qlik.export.test",
example_data
)
)
# Let us see if we see the exported results
conn %>% dbGetQuery("select * FROM qlik.export.test")
# Let's clean the mess and force-close connection at the end of the process
conn %>% dbDisconnect()
- &gt;,它看起来相当优雅。 data.frame
解决方案。
享受!