我想使用ImageNet进行回归,标签是对象的两个坐标,例如(622 132 736 318),我已将图像转换为.lmdb文件。但是当我尝试训练时,发现此错误
I0510 16:50:06.576092 7167 layer_factory.hpp:77] Creating layer data I0510 16:50:06.576848 7167 net.cpp:106] Creating Layer data I0510 16:50:06.576869 7167 net.cpp:411] data -> data I0510 16:50:06.576900 7167 net.cpp:411] data -> label I0510 16:50:06.576916 7167 data_transformer.cpp:25] Loading mean file from: /home/sx/caffe-master/sx/person_location/data/conferenceroom_train_mean.binaryproto I0510 16:50:06.578588 7171 db_lmdb.cpp:38] Opened lmdb /home/shawn/caffe-master/shawn/person_location/data/conferenceroom_train_lmdb I0510 16:50:06.595842 7167 data_layer.cpp:41] output data size: 256,3,227,227 I0510 16:50:08.680726 7167 net.cpp:150] Setting up data I0510 16:50:08.680807 7167 net.cpp:157] Top shape: 256 3 227 227 (39574272) I0510 16:50:08.680817 7167 net.cpp:157] Top shape: 256 (256) I0510 16:50:08.680824 7167 net.cpp:165] Memory required for data: 158298112 I0510 16:50:08.680842 7167 layer_factory.hpp:77] Creating layer conv1 I0510 16:50:08.680874 7167 net.cpp:106] Creating Layer conv1 I0510 16:50:08.680884 7167 net.cpp:454] conv1 <- data I0510 16:50:08.680907 7167 net.cpp:411] conv1 -> conv1 F0510 16:50:08.927338 7167 blob.cpp:33] Check failed: shape[i] >= 0 (-281264070 vs. 0) *** Check failure stack trace: *** @ 0x7fec6e186778 (unknown) @ 0x7fec6e1866b2 (unknown) @ 0x7fec6e1860b4 (unknown) @ 0x7fec6e189055 (unknown) @ 0x7fec73a13598 caffe::Blob<>::Reshape() @ 0x7fec7395206c caffe::BaseConvolutionLayer<>::Reshape() @ 0x7fec739a90ef caffe::CuDNNConvolutionLayer<>::Reshape() @ 0x7fec738d32fb caffe::Net<>::Init() @ 0x7fec738d4a98 caffe::Net<>::Net() @ 0x7fec73a1fd62 caffe::Solver<>::InitTrainNet() @ 0x7fec73a21262 caffe::Solver<>::Init() @ 0x7fec73a21599 caffe::Solver<>::Solver() @ 0x7fec738ebf43 caffe::Creator_SGDSolver<>() @ 0x4105bc caffe::SolverRegistry<>::CreateSolver() @ 0x4087ed train() @ 0x405d67 main @ 0x7fec64993b45 (unknown) @ 0x406588 (unknown) @ (nil) (unknown) Aborted
这是train_val.prototxt
name: "AlexNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_mean.binaryproto"
}
data_param {
source: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_mean.binaryproto"
}
data_param {
source: "/home/shawn/caffe-master/person_location/data/conferenceroom_val_lmdb"
batch_size: 50
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "norm1"
type: "LRN"
bottom: "conv1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool1"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "norm2"
type: "LRN"
bottom: "conv2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "norm2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc8"
bottom: "label"
top: "loss"
}