我正在尝试在R中的引导函数中添加进度条。 我试图使示例函数尽可能简单(因此我在本例中使用mean)。
library(boot)
v1 <- rnorm(1000)
rep_count = 1
m.boot <- function(data, indices) {
d <- data[indices]
setWinProgressBar(pb, rep_count)
rep_count <- rep_count + 1
Sys.sleep(0.01)
mean(d, na.rm = T)
}
tot_rep <- 200
pb <- winProgressBar(title = "Bootstrap in progress", label = "",
min = 0, max = tot_rep, initial = 0, width = 300)
b <- boot(v1, m.boot, R = tot_rep)
close(pb)
引导程序正常运行,但问题是rep_count
的值在循环中没有增加,进度条在此过程中保持冻结状态。
如果我在bootstrap完成后检查rep_count
的值,它仍然是1.
我做错了什么?也许启动函数不是简单地在循环中插入m.boot
函数,因此其中的变量不会增加?
谢谢。
答案 0 :(得分:2)
增加的rep_count
是一个局部变量,在每次函数调用后丢失。在下一次迭代中,函数再次从全局环境中获取rep_count
,即其值为1.
您可以使用<<-
:
rep_count <<- rep_count + 1
这将分配给在函数外部的搜索路径上首次找到的rep_count
。当然,通常不推荐使用<<-
,因为应避免使用函数的副作用,但这里有一个合法的用例。但是,您应该将整个事物包装在一个函数中,以避免对全局环境产生副作用。
可能有更好的解决方案......
答案 1 :(得分:2)
pbapply 包旨在用于矢量化函数。在这个问题的上下文中有两种方法可以实现:(1)按照建议写一个包装器,它不会产生类'boot'
的相同对象; (2)或者,行lapply(seq_len(RR), fn)
可以写为pblapply(seq_len(RR), fn)
。选项2可以通过本地复制/更新boot
函数来实现,如下例所示,或者询问软件包维护者Brian Ripley是否考虑直接或通过 pbapply添加进度条强>作为依赖。
我的解决方案(评论指出的变化):
library(boot)
library(pbapply)
boot2 <- function (data, statistic, R, sim = "ordinary", stype = c("i",
"f", "w"), strata = rep(1, n), L = NULL, m = 0, weights = NULL,
ran.gen = function(d, p) d, mle = NULL, simple = FALSE, ...,
parallel = c("no", "multicore", "snow"), ncpus = getOption("boot.ncpus",
1L), cl = NULL)
{
call <- match.call()
stype <- match.arg(stype)
if (missing(parallel))
parallel <- getOption("boot.parallel", "no")
parallel <- match.arg(parallel)
have_mc <- have_snow <- FALSE
if (parallel != "no" && ncpus > 1L) {
if (parallel == "multicore")
have_mc <- .Platform$OS.type != "windows"
else if (parallel == "snow")
have_snow <- TRUE
if (!have_mc && !have_snow)
ncpus <- 1L
loadNamespace("parallel")
}
if (simple && (sim != "ordinary" || stype != "i" || sum(m))) {
warning("'simple=TRUE' is only valid for 'sim=\"ordinary\", stype=\"i\", n=0', so ignored")
simple <- FALSE
}
if (!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE))
runif(1)
seed <- get(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
n <- NROW(data)
if ((n == 0) || is.null(n))
stop("no data in call to 'boot'")
temp.str <- strata
strata <- tapply(seq_len(n), as.numeric(strata))
t0 <- if (sim != "parametric") {
if ((sim == "antithetic") && is.null(L))
L <- empinf(data = data, statistic = statistic, stype = stype,
strata = strata, ...)
if (sim != "ordinary")
m <- 0
else if (any(m < 0))
stop("negative value of 'm' supplied")
if ((length(m) != 1L) && (length(m) != length(table(strata))))
stop("length of 'm' incompatible with 'strata'")
if ((sim == "ordinary") || (sim == "balanced")) {
if (isMatrix(weights) && (nrow(weights) != length(R)))
stop("dimensions of 'R' and 'weights' do not match")
}
else weights <- NULL
if (!is.null(weights))
weights <- t(apply(matrix(weights, n, length(R),
byrow = TRUE), 2L, normalize, strata))
if (!simple)
i <- index.array(n, R, sim, strata, m, L, weights)
original <- if (stype == "f")
rep(1, n)
else if (stype == "w") {
ns <- tabulate(strata)[strata]
1/ns
}
else seq_len(n)
t0 <- if (sum(m) > 0L)
statistic(data, original, rep(1, sum(m)), ...)
else statistic(data, original, ...)
rm(original)
t0
}
else statistic(data, ...)
pred.i <- NULL
fn <- if (sim == "parametric") {
ran.gen
data
mle
function(r) {
dd <- ran.gen(data, mle)
statistic(dd, ...)
}
}
else {
if (!simple && ncol(i) > n) {
pred.i <- as.matrix(i[, (n + 1L):ncol(i)])
i <- i[, seq_len(n)]
}
if (stype %in% c("f", "w")) {
f <- freq.array(i)
rm(i)
if (stype == "w")
f <- f/ns
if (sum(m) == 0L)
function(r) statistic(data, f[r, ], ...)
else function(r) statistic(data, f[r, ], pred.i[r,
], ...)
}
else if (sum(m) > 0L)
function(r) statistic(data, i[r, ], pred.i[r, ],
...)
else if (simple)
function(r) statistic(data, index.array(n, 1, sim,
strata, m, L, weights), ...)
else function(r) statistic(data, i[r, ], ...)
}
RR <- sum(R)
res <- if (ncpus > 1L && (have_mc || have_snow)) {
if (have_mc) {
parallel::mclapply(seq_len(RR), fn, mc.cores = ncpus)
}
else if (have_snow) {
list(...)
if (is.null(cl)) {
cl <- parallel::makePSOCKcluster(rep("localhost",
ncpus))
if (RNGkind()[1L] == "L'Ecuyer-CMRG")
parallel::clusterSetRNGStream(cl)
res <- parallel::parLapply(cl, seq_len(RR), fn)
parallel::stopCluster(cl)
res
}
else parallel::parLapply(cl, seq_len(RR), fn)
}
}
else pblapply(seq_len(RR), fn) #### changed !!!
t.star <- matrix(, RR, length(t0))
for (r in seq_len(RR)) t.star[r, ] <- res[[r]]
if (is.null(weights))
weights <- 1/tabulate(strata)[strata]
boot.return(sim, t0, t.star, temp.str, R, data, statistic,
stype, call, seed, L, m, pred.i, weights, ran.gen, mle)
}
## Functions not exported by boot
isMatrix <- boot:::isMatrix
index.array <- boot:::index.array
boot.return <- boot:::boot.return
## Now the example
m.boot <- function(data, indices) {
d <- data[indices]
mean(d, na.rm = T)
}
tot_rep <- 200
v1 <- rnorm(1000)
b <- boot2(v1, m.boot, R = tot_rep)
答案 2 :(得分:1)
我想我找到了一个可能的解决方案。这将@Roland的答案与pbapply
包的便利性合并,使用其函数startpb()
,closepb()
等。
library(boot)
library(pbapply)
v1 <- rnorm(1000)
rep_count = 1
tot_rep = 200
m.boot <- function(data, indices) {
d <- data[indices]
setpb(pb, rep_count)
rep_count <<- rep_count + 1
Sys.sleep(0.01) #Just to slow down the process
mean(d, na.rm = T)
}
pb <- startpb(min = 0, max = tot_rep)
b <- boot(v1, m.boot, R = tot_rep)
closepb(pb)
rep_count = 1
如前所述,将函数中的所有内容包装起来可以避免弄乱rep_count
变量。
答案 3 :(得分:1)
包dplyr
的进度条效果很好:
library(dplyr)
library(boot)
v1 <- rnorm(1000)
m.boot <- function(data, indices) {
d <- data[indices]
p$tick()$print() # update progress bar
Sys.sleep(0.01)
mean(d, na.rm = T)
}
tot_rep <- 200
p <- progress_estimated(tot_rep+1) # init progress bar
b <- boot(v1, m.boot, R = tot_rep)
答案 4 :(得分:0)
您可以使用包pbapply
library(boot)
library(pbapply)
v1 <- rnorm(1000)
rep_count = 1
# your m.boot function ....
m.boot <- function(data, indices) {
d <- data[indices]
mean(d, na.rm = T)
}
# ... wraped in `bootfunc`
bootfunc <- function(x) { boot(x, m.boot, R = 200) }
# apply function to v1 , returning progress bar
pblapply(v1, bootfunc)
# > b <- pblapply(v1, bootfunc)
# > |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% Elapsed time: 02s
答案 5 :(得分:0)
您可以按以下方式使用软件包progress
:
prior_task = prior_task >> PythonOperator
我还没有弄清楚为什么需要将library(boot)
library(progress)
v1 <- rnorm(1000)
#add progress bar as parameter to function
m.boot <- function(data, indices, prog) {
#display progress with each run of the function
prog$tick()
d <- data[indices]
Sys.sleep(0.01)
mean(d, na.rm = T)
}
tot_rep <- 200
#initialize progress bar object
pb <- progress_bar$new(total = tot_rep + 1)
#perform bootstrap
boot(data = v1, statistic = m.boot, R = tot_rep, prog = pb)
的迭代次数设置为bootstrap复制总数(参数progress_bar
)的+1,但这是在我自己的代码,否则会引发错误。引导程序函数运行的时间似乎比参数R
中指定的运行时间多,因此,如果将进度条设置为仅运行R
次,它会认为作业实际上是在完成之前完成的。