使用Beautiful Soup刮掉在特定日期循环的桌子

时间:2016-06-06 23:06:01

标签: python-2.7 web-scraping beautifulsoup

我试图通过使用BeautifulSoup从这里找到的桌子上榨取必要的历史咖啡价格,一直在驾驶自己:     http://www.investing.com/commodities/us-coffee-c-historical-data

我试图从04-04-16到2016年8月4日推出价值数周的市场价格。

我的最终目标是为这些日期刮掉整张桌子。将所有列从日期拉到更改%。

我的第一步是使用元素中使用的日期格式创建我想要的日期字典:

dates={1 : "Apr 04, 2016",
  2 : "Apr 05, 2016",
  3 : "Apr 06, 2016",
  4 : "Apr 07, 2016",
  5 : "Apr 08, 2016"}
dates

接下来我想要刮掉桌子,但是我无法按照需要做它需要的地方,因此我试图拉出各个元素:

import requests
from bs4 import BeautifulSoup

url = "http://www.investing.com/commodities/us-coffee-c-historical-data"
page  = requests.get(url).text
soup_coffee = BeautifulSoup(page)

coffee_table = soup_coffee.find("table", class_="genTbl closedTbl historicalTbl")
coffee_titles = coffee_table.find_all("th", class_="noWrap")

for coffee_title in coffee_titles:
  price = coffee_title.find("td", class_="greenfont")
  print(price)

除了返回的值是:

None
None
None
None
None
None
None

首先,为什么我会返回“无”值?我觉得它与我的代码中的coffee_titles部分有关,而且它无法正确识别列标题。

其次,我是否有一种有效的方法可以使用日期字典中的日期范围来刮取整个表格?

任何建议都将不胜感激。

1 个答案:

答案 0 :(得分:2)

您在代码标签中寻找td标签时代码失败,如果您打印 coffee_titles ,很明显为什么会看到None

[<th class="first left noWrap">Date</th>, <th class="noWrap">Price</th>, <th class="noWrap">Open</th>, <th class="noWrap">High</th>, <th class="noWrap">Low</th>, <th class="noWrap">Vol.</th>, <th class="noWrap">Change %</th>]

没有td标签。

要获取所有表数据,您可以从表中提取日期并将其用作键:

from bs4 import BeautifulSoup
from collections import OrderedDict

r = requests.get("http://www.investing.com/commodities/us-coffee-c-historical-data")
od = OrderedDict()
soup = BeautifulSoup(r.content,"lxml")

# select the table
table = soup.select_one("table.genTbl.closedTbl.historicalTbl")

# all col names
cols = [th.text for th in table.select("th")[1:]]
# get all rows bar the first i.e the headers
for row in table.select("tr + tr"):
    # get all the data including the date
    data = [td.text for td in row.select("td")]
    # use date as the key and store list of values
    od[data[0]] = dict(zip(cols,  data[1:]))


from  pprint import pprint as pp

pp(dict(od))

输出:

    {u'Jun 01, 2016': {u'Change %': u'0.29%',
                   u'High': u'123.10',
                   u'Low': u'120.85',
                   u'Open': u'121.50',
                   u'Price': u'121.90',
                   u'Vol.': u'18.55K'},
 u'Jun 02, 2016': {u'Change %': u'0.90%',
                   u'High': u'124.40',
                   u'Low': u'122.15',
                   u'Open': u'122.50',
                   u'Price': u'123.00',
                   u'Vol.': u'22.11K'},
 u'Jun 03, 2016': {u'Change %': u'3.33%',
                   u'High': u'127.40',
                   u'Low': u'122.50',
                   u'Open': u'122.60',
                   u'Price': u'127.10',
                   u'Vol.': u'28.47K'},
 u'Jun 06, 2016': {u'Change %': u'3.62%',
                   u'High': u'132.05',
                   u'Low': u'127.10',
                   u'Open': u'127.30',
                   u'Price': u'131.70',
                   u'Vol.': u'30.65K'},
 u'May 09, 2016': {u'Change %': u'2.49%',
                   u'High': u'126.60',
                   u'Low': u'123.28',
                   u'Open': u'125.65',
                   u'Price': u'126.53',
                   u'Vol.': u'-'},
 u'May 10, 2016': {u'Change %': u'0.29%',
                   u'High': u'125.90',
                   u'Low': u'125.90',
                   u'Open': u'125.90',
                   u'Price': u'126.90',
                   u'Vol.': u'0.01K'},
 u'May 11, 2016': {u'Change %': u'2.26%',
                   u'High': u'129.77',
                   u'Low': u'126.88',
                   u'Open': u'128.60',
                   u'Price': u'129.77',
                   u'Vol.': u'-'},
 u'May 12, 2016': {u'Change %': u'-1.21%',
                   u'High': u'128.75',
                   u'Low': u'127.30',
                   u'Open': u'128.75',
                   u'Price': u'128.20',
                   u'Vol.': u'0.01K'},
 u'May 13, 2016': {u'Change %': u'0.47%',
                   u'High': u'127.85',
                   u'Low': u'127.80',
                   u'Open': u'127.85',
                   u'Price': u'128.80',
                   u'Vol.': u'0.01K'},
 u'May 16, 2016': {u'Change %': u'3.03%',
                   u'High': u'131.95',
                   u'Low': u'128.75',
                   u'Open': u'128.75',
                   u'Price': u'132.70',
                   u'Vol.': u'0.01K'},
 u'May 17, 2016': {u'Change %': u'-0.64%',
                   u'High': u'132.60',
                   u'Low': u'132.60',
                   u'Open': u'132.60',
                   u'Price': u'131.85',
                   u'Vol.': u'-'},
 u'May 18, 2016': {u'Change %': u'-1.93%',
                   u'High': u'129.65',
                   u'Low': u'128.15',
                   u'Open': u'128.85',
                   u'Price': u'129.30',
                   u'Vol.': u'0.02K'},
 u'May 19, 2016': {u'Change %': u'-4.14%',
                   u'High': u'129.00',
                   u'Low': u'123.70',
                   u'Open': u'128.95',
                   u'Price': u'123.95',
                   u'Vol.': u'29.69K'},
 u'May 20, 2016': {u'Change %': u'0.61%',
                   u'High': u'125.95',
                   u'Low': u'124.25',
                   u'Open': u'124.75',
                   u'Price': u'124.70',
                   u'Vol.': u'15.54K'},
 u'May 23, 2016': {u'Change %': u'-2.04%',
                   u'High': u'124.70',
                   u'Low': u'122.00',
                   u'Open': u'124.50',
                   u'Price': u'122.15',
                   u'Vol.': u'15.89K'},
 u'May 24, 2016': {u'Change %': u'-0.29%',
                   u'High': u'123.30',
                   u'Low': u'121.55',
                   u'Open': u'122.45',
                   u'Price': u'121.80',
                   u'Vol.': u'15.06K'},
 u'May 25, 2016': {u'Change %': u'-0.33%',
                   u'High': u'122.95',
                   u'Low': u'121.20',
                   u'Open': u'122.45',
                   u'Price': u'121.40',
                   u'Vol.': u'18.11K'},
 u'May 26, 2016': {u'Change %': u'0.08%',
                   u'High': u'122.15',
                   u'Low': u'121.20',
                   u'Open': u'121.90',
                   u'Price': u'121.50',
                   u'Vol.': u'19.27K'},
 u'May 27, 2016': {u'Change %': u'-0.16%',
                   u'High': u'122.35',
                   u'Low': u'120.80',
                   u'Open': u'122.10',
                   u'Price': u'121.30',
                   u'Vol.': u'13.52K'},
 u'May 31, 2016': {u'Change %': u'0.21%',
                   u'High': u'123.90',
                   u'Low': u'121.35',
                   u'Open': u'121.55',
                   u'Price': u'121.55',
                   u'Vol.': u'23.62K'}}

现在要获取具体日期,我们需要使用http://www.investing.com/instruments/HistoricalDataAjax的帖子来模仿和调用ajax:

from bs4 import BeautifulSoup
from collections import OrderedDict

# data to post
data = {"action": "historical_data",
        "curr_id": "8832",
        "st_date": "04/04/2016",
        "end_date": "04/08/2016",
        "interval_sec": "Daily"}

# add a user agent and specify that we are making an ajax request
head = {

        "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.75 Safari/537.36",
        "X-Requested-With": "XMLHttpRequest"}

with requests.Session() as s:
    r = s.post("http://www.investing.com/instruments/HistoricalDataAjax", data=data, headers=head)
    od = OrderedDict()
    soup = BeautifulSoup(r.content, "lxml")

    table = soup.select_one("table.genTbl.closedTbl.historicalTbl")
       cols = [th.text for th in table.select("th")][1:]
    for row in table.select("tr + tr"):
        data = [td.text for td in row.select("td")]
        od[data[0]] = dict(zip(cols, data[1:]))

from pprint import pprint as pp

pp(dict(od))

现在我们只获取从 st_date end_date 的日期范围:

{u'Apr 04, 2016': {u'Change %': u'-3.50%',
                   u'High': u'126.55',
                   u'Low': u'122.30',
                   u'Open': u'125.80',
                   u'Price': u'122.80',
                   u'Vol.': u'25.18K'},
 u'Apr 05, 2016': {u'Change %': u'-1.55%',
                   u'High': u'122.85',
                   u'Low': u'120.55',
                   u'Open': u'122.85',
                   u'Price': u'120.90',
                   u'Vol.': u'25.77K'},
 u'Apr 06, 2016': {u'Change %': u'0.50%',
                   u'High': u'122.15',
                   u'Low': u'120.00',
                   u'Open': u'121.45',
                   u'Price': u'121.50',
                   u'Vol.': u'17.94K'},
 u'Apr 07, 2016': {u'Change %': u'-1.40%',
                   u'High': u'122.60',
                   u'Low': u'119.60',
                   u'Open': u'122.35',
                   u'Price': u'119.80',
                   u'Vol.': u'32.69K'}}

您可以在 xhr 标签下的Chrome开发者工具中查看帖子请求:

enter image description here