Python构建对象实例:object()不带参数

时间:2016-06-06 15:41:07

标签: python class object constructor arguments

我正在写一个类似于他们的MNIST LSTM示例代码的张量流程序。我正在构建我的数据文件,而我无法构建对象实例。

本质上,流程是:定义一个empyty实例data_sets = DataSet(),然后构建对象data_sets.train = DataSet(arg1, arg2...)data_sets.test = DataSet(arg1, arg2...),依此类推

我在尝试构建data_sets.train = DataSet(arg1, arg2...)

时收到错误(底部的确切错误)

MNIST代码如下所示:

class DataSet(object):

  def __init__(self, images, labels, fake_data=False, one_hot=False,
           dtype=tf.float32):
    """Construct a DataSet.

    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = tf.as_dtype(dtype).base_dtype
    #pdb.set_trace()
    if dtype not in (tf.uint8, tf.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      pdb.set_trace()
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape,
                                                 labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0

  @property
  def images(self):
    return self._images

  @property
  def labels(self):
    return self._labels

  @property
  def num_examples(self):
    return self._num_examples

  @property
  def epochs_completed(self):
    return self._epochs_completed

然后在同一个文件中,他们有一个函数定义一个没有参数的实例(在pass之后),构建数据集(我已经离开了那个部分),然后构建了对象{{1} } data_set - 每次他们再次调用类构造函数时,这次它们包含参数。如下图所示

data_set.train, data_set.validation, and data_set.test

我基本上构建了完全相同的东西,但使用不同的数据集

这是我的班级定义(忽略标签,复制和粘贴混乱的标识 - 我不认为缩进是问题)

def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
  class DataSets(object):
    pass
  pdb.set_trace()
  data_sets = DataSets()
  ...(build dataset)...
  data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
  data_sets.validation = DataSet(validation_images, validation_labels,
                             dtype=dtype)
  data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
  pdb.set_trace()
  return data_sets

然后我用以下方法构建对象:

class ScrollData(object):

  def __init__(self, images, labels, dtype=tf.float32):

    dtype = tf.as_dtype(dtype).base_dtype
    if dtype not in (tf.float64, tf.float32):
        raise TypeError('Invalid image dtype %r, expected float64 or float32' %
                  dtype)
    assert images.shape[0] == labels.shape[0], (
      'images.shape: %s labels.shape: %s' % (images.shape,
                                             labels.shape))
    self._num_examples = images.shape[0]
    pdb.set_trace()
    assert images.shape[3] == 1
    images = images.reshape(images.shape[0],
                          images.shape[1] * images.shape[2])
    if dtype == tf.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)

    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0

@property
def images(self):
    return self._images

@property
def labels(self):
    return self._labels

@property
def num_examples(self):
    return self._num_examples

@property
def epochs_completed(self):
    return self._epochs_completed

我收到以下错误:

def read_data(data_dir):
    dtype=tf.float32
    VALIDATION_SIZE = 1
    TEST_SIZE = 1

    class ScrollData(object):
        pass

    data_sets = ScrollData()

    ...(build dataset)...

    data_sets.train = ScrollData(train_images, train_labels,  dtype=tf.float32)
    data_sets.validation = ScrollData(validation_images, validation_labels,  dtype=tf.float32)
    data_sets.test = ScrollData(testtest_images, test_labels,  dtype=tf.float32)

    return data_sets

1 个答案:

答案 0 :(得分:2)

使用不带构造函数参数的类覆盖ScrollData函数中的read_data

保留此重新定义,并为第一个调用添加参数或在构造函数中定义标准值