我有一个像这样的数据框。
private void button7_Click(object sender, EventArgs e)
{
List<OpenPop.Mime.Message> allaEmail = FetchAllMessages(...);
StringBuilder builder = new StringBuilder();
foreach(OpenPop.Mime.Message message in allaEmail)
{
OpenPop.Mime.MessagePart plainText = message.FindFirstPlainTextVersion();
if(plainText != null)
{
// We found some plaintext!
builder.Append(plainText.GetBodyAsText());
} else
{
// Might include a part holding html instead
OpenPop.Mime.MessagePart html = message.FindFirstHtmlVersion();
if(html != null)
{
// We found some html!
builder.Append(html.GetBodyAsText());
}
}
}
MessageBox.Show(builder.ToString());
}
我必须对每一行应用计算。这是每个元素x
user tag1 tag2 tag3
0 Roshan ghai 0.0 1.0 1.0
1 mank nion 1.0 1.0 2.0
2 pop rajuel 2.0 0.0 1.0
3 random guy 2.0 1.0 1.0
我用##来描述那个特定的值。我必须为数据帧的每个元素执行此操作,这是最有效的方法,因为我有一个很大的数字。元素。我正在使用python2.7。 输出:
x =(( specific tag's count for that user ##that element itself##))/ max no. of count of that tag ##max value of that column##)) * (ln(no. of total user ##lenth of df##)/(no. of of user having that tag ##no. of user having non 0 count for that particular tag or column ##))
我刚刚使用了我为mank nion和tag1编写的公式 x =((1.0)/2.0)*(ln(4/3)= .143。
答案 0 :(得分:1)
你可以试试这个:
import io
temp = u""" user tag1 tag2 tag3
0 Roshan-ghai 0.0 1.0 1.0
1 mank-nion 1.0 1.0 2.0
2 pop-rajuel 2.0 0.0 1.0
3 random-guy 2.0 1.0 1.0"""
df = pd.read_csv(io.StringIO(temp), delim_whitespace=True)
maxtag1 = df.tag1.max()
maxtag2 = df.tag2.max()
maxtag3 = df.tag3.max()
number_users = len(df)
number_users_tag1 = len(df[df['tag1']!=0])
number_users_tag2 = len(df[df['tag2']!=0])
number_users_tag3 = len(df[df['tag3']!=0])
liste_values = [maxtag1,maxtag2,maxtag3,number_users,number_users_tag1,number_users_tag2,number_users_tag3]
然后创建一个函数,该函数将行和这些值作为输入,并输出所需的三个值。并使用apply
:
output = df.apply(lambda x: yourfunction(x, list_values))
答案 1 :(得分:1)
您可以先ix
选择没有第一列的所有值。然后使用非{0}的max
,sum
和numpy.log
:
import pandas as pd
import numpy as np
print (df.ix[:, 'tag1':].max())
tag1 2.0
tag2 1.0
tag3 2.0
dtype: float64
print ((df.ix[:, 'tag1':] != 0).sum())
tag1 3
tag2 3
tag3 4
dtype: int64
df.ix[:, 'tag1':] = (df.ix[:, 'tag1':] / df.ix[:, 'tag1':].max() *
(np.log(len(df) / (df.ix[:, 'tag1':] != 0).sum())))
print (df)
user tag1 tag2 tag3
0 Roshan-ghai 0.000000 0.287682 0.0
1 mank-nion 0.143841 0.287682 0.0
2 pop-rajuel 0.287682 0.000000 0.0
3 random-guy 0.287682 0.287682 0.0
iloc
的另一个解决方案:
df1 = df.iloc[:, 1:]
df.iloc[:, 1:] = (df1 / df1.max() * (np.log(len(df) / (df1 != 0).sum())))
print (df)
user tag1 tag2 tag3
0 Roshan-ghai 0.000000 0.287682 0.0
1 mank-nion 0.143841 0.287682 0.0
2 pop-rajuel 0.287682 0.000000 0.0
3 random-guy 0.287682 0.287682 0.0