找到具有0个样本的阵列(形状=(0,40)),同时至少需要1个

时间:2016-06-04 16:29:56

标签: python numpy scikit-learn

我正在使用Python 2.7,sklearn 0.17.1,numpy 1.11.0测试一个简单的预测程序。我从LDA模型得到了具有可比性的矩阵,现在我想创建RandomForestClassifier来按可行性预测结果。 我的代码是:

ValueError                                Traceback (most recent call last)
<ipython-input-65-a7d276df43e9> in <module>()
      1 # clf.fit(nteta, ny)
      2 print nteta.shape, ny.shape
----> 3 accuracy = cross_val_score(clf, nteta, ny, scoring = 'accuracy')
      4 print accuracy

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/cross_validation.pyc in cross_val_score(estimator, X, y, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
   1431                                               train, test, verbose, None,
   1432                                               fit_params)
-> 1433                       for train, test in cv)
   1434     return np.array(scores)[:, 0]
   1435 

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
    798             # was dispatched. In particular this covers the edge
    799             # case of Parallel used with an exhausted iterator.
--> 800             while self.dispatch_one_batch(iterator):
    801                 self._iterating = True
    802             else:

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch_one_batch(self, iterator)
    656                 return False
    657             else:
--> 658                 self._dispatch(tasks)
    659                 return True
    660 

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _dispatch(self, batch)
    564 
    565         if self._pool is None:
--> 566             job = ImmediateComputeBatch(batch)
    567             self._jobs.append(job)
    568             self.n_dispatched_batches += 1

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __init__(self, batch)
    178         # Don't delay the application, to avoid keeping the input
    179         # arguments in memory
--> 180         self.results = batch()
    181 
    182     def get(self):

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self)
     70 
     71     def __call__(self):
---> 72         return [func(*args, **kwargs) for func, args, kwargs in self.items]
     73 
     74     def __len__(self):

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, error_score)
   1529             estimator.fit(X_train, **fit_params)
   1530         else:
-> 1531             estimator.fit(X_train, y_train, **fit_params)
   1532 
   1533     except Exception as e:

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/ensemble/forest.pyc in fit(self, X, y, sample_weight)
    210         """
    211         # Validate or convert input data
--> 212         X = check_array(X, dtype=DTYPE, accept_sparse="csc")
    213         if issparse(X):
    214             # Pre-sort indices to avoid that each individual tree of the

/home/egor/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    405                              " minimum of %d is required%s."
    406                              % (n_samples, shape_repr, ensure_min_samples,
--> 407                                 context))
    408 
    409     if ensure_min_features > 0 and array.ndim == 2:

ValueError: Found array with 0 sample(s) (shape=(0, 40)) while a minimum of 1 is required.
{{1}}

UPD 我得到2减去?让评论家具有建设性。

UPD

cotique发现y填充不正确(必须是其他类)。如果y填充正确则问题不会发生。在我的情况下,课程是错误的,他们的计数是39774.但理论上它不是一个答案,为什么当我们有39774个课程并且必须预测它们时会发生错误。

1 个答案:

答案 0 :(得分:3)

这是scikit-learn repo(validation.py#L409)的原始代码:

if ensure_min_samples > 0:
   n_samples = _num_samples(array)
   if n_samples < ensure_min_samples:
      raise ValueError("Found array with %d sample(s) (shape=%s) while a"
                       " minimum of %d is required%s."
                        % (n_samples, shape_repr, ensure_min_samples,
                        context))

所以,n_samples = _num_samples(array)。顺便说一下,arrayinput object to check / convert

接下来,validation.py#L111

def _num_samples(x):
    """Return number of samples in array-like x."""
    if hasattr(x, 'fit'):
        # stuff
    if not hasattr(x, '__len__') and not hasattr(x, 'shape'):
        # stuff
    if hasattr(x, 'shape'):
        if len(x.shape) == 0:
            # raise TypeError
        return x.shape[0]
    else:
        return len(x)

因此,样本数等于array的第一维长度,0以来array.shape = (0, 40)

我不知道这一切意味着什么,但我希望它能让事情更清楚。