比较两个不同大小的矩阵,制作一个大矩阵 - 速度提升?

时间:2016-06-03 15:46:36

标签: python performance matrix large-data

我有两个矩阵,我需要用它来创建一个更大的矩阵。每个矩阵只是一个以制表符分隔的文本文件,可以读取。每个矩阵有48个列,每个矩阵具有相同的标识符,具有不同的行数。第一个矩阵是108887x48,第二个矩阵是55482x48。每个矩阵的每个位置的条目可以是0或1,所以二进制。最终输出应该有第一个矩阵行id作为行,第二个矩阵行id作为cols,所以最终矩阵是55482x10887。

这里需要发生的是,对于第一个矩阵中每行中的每个pos,对于第二个矩阵中的每一行,如果每个矩阵的pos(col)为1,那么最终矩阵计数将增加1最终矩阵中任何位置的最高值可以是48,并且预计会剩下0。

示例:

mat1
     A B C D
1id1 0 1 0 1
1id2 1 1 0 0
1id3 1 1 1 1
1id4 0 0 1 0

mat2
     A B C D
2id1 1 1 0 0
2id2 0 1 1 0 
2id3 1 1 1 1 
2id4 1 0 1 0

final
     2id1 2id2 2id3 2id4
1id1   1    1    2    0
1id2   2    1    2    1
1id3   2    2    4    2
1id4   0    1    1    1

我有代码可以做到这一点,但是它很慢,这是我主要寻求帮助的地方。我试图尽可能加快算法速度。它已经运行了24小时,而且只有25%左右。我让它在之前运行,最终输出文件是20GB。我没有数据库的经验,可以在这里实现,如果osomeone可以帮助我如何这样做,给出下面的代码片段。

#!/usr/bin/env python

import sys

mat1in = sys.argv[1]
mat2in = sys.argv[2]

print '\n######################################################################################'
print 'Generating matrix by counts from smaller matrices.'
print '########################################################################################\n'

with open(mat1in, 'r') as f:
        cols = [''] + next(f).strip().split('\t')               # First line of matrix is composed of 48 cols
        mat1 = [line.strip().split('\t') for line in f]         # Each line in matrix = 'ID': 0 or 1 per col id

with open(mat2in, 'r') as f:
        next(f)                                                 # Skip first row, col IDs are taken from mat1
        mat2 = [line.strip().split('\t') for line in f]         # Each line in matrix = 'ID': 0 or 1 per col id

out = open('final_matrix.txt', 'w')                             # Output file

#matrix = []
header = []                                                     # Final matrix header
header.append('')                                               # Add blank as first char in large matrix header
for i in mat2:
        header.append(i[0])                                     # Composed of all mat2 row ids
#matrix.append(header)

print >> out, '\t'.join(header)                                 # First print header to output file

print '\nTotal mat1 rows: ' + str(len(mat1))                    # Get total mat1 rows
print 'Total mat2 rows: ' + str(len(mat2)), '\n'                # Get total mat2 rows
print 'Progress: '                                              # Progress updated as each mat1 id is read

length = len(header)                                            # Length of header, i.e. total number of mat2 ids
totmat1 = len(mat1)                                             # Length of rows (-header), i.e. total number of mat1 ids

total = 0                                                       # Running total - for progress meter
for h in mat1:                                                  # Loop through all mat1 ids - each row in the HC matrix
        row = []                                                # Empty list for new row for large matrix
        row.append(h[0])                                        # Append mat1 id, as first item in each row
        for i in xrange(length-1):                              # For length of large matrix header (add 0 to each row) - header -1 for first '\t'
                row.extend('0')
        for n in xrange(1,49):                                  # Loop through each col id
                for k in mat2:                                  # For every row in mat2
                        if int(h[n]) == 1 and int(k[n]) == 1:   # If the pos (count for that particular col id) is 1 from mat1 and mat2 matrix;
                                pos = header.index(k[0])        # Get the position of the mat2 id
                                row[pos] = str(int(row[pos]) + 1)       # Add 1 to current position in row - [i][j] = [mat1_id][mat2_id]
        print >> out, '\t'.join(row)                            # When row is completed (All columns are compared from both mat1 and mat2 matrices; print final row to large matrix
        total += 1                                              # Update running total
        sys.stdout.write('\r\t' + str(total) + '/' + str(tvh))  # Print progress to screen
        sys.stdout.flush()

print '\n######################################################################################'
print 'Matrix complete.'
print '########################################################################################\n'

这是在mat1中对ids的前30次迭代进行概况分析:

######################################################################################
Generating matrix by counts from smaller matrices.
########################################################################################


Total mat1 rows: 108887
Total mat2 rows: 55482

Progress:
        30/108887^C         2140074 function calls in 101.234 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1   70.176   70.176  101.234  101.234 build_matrix.py:3(<module>)
        4    0.000    0.000    0.000    0.000 {len}
    55514    0.006    0.000    0.006    0.000 {method 'append' of 'list' objects}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}
  1719942    1.056    0.000    1.056    0.000 {method 'extend' of 'list' objects}
       30    0.000    0.000    0.000    0.000 {method 'flush' of 'file' objects}
    35776   29.332    0.001   29.332    0.001 {method 'index' of 'list' objects}
       31    0.037    0.001    0.037    0.001 {method 'join' of 'str' objects}
   164370    0.589    0.000    0.589    0.000 {method 'split' of 'str' objects}
   164370    0.033    0.000    0.033    0.000 {method 'strip' of 'str' objects}
       30    0.000    0.000    0.000    0.000 {method 'write' of 'file' objects}
        2    0.000    0.000    0.000    0.000 {next}
        3    0.004    0.001    0.004    0.001 {open}

我也计时每次迭代,每个mat1 id大约需要2.5-3s,如果我正确的话需要大约90小时来完成整个事情。这是关于整个脚本一直运行所需的内容。

我已经编辑了一些主要部分,通过追加和xrange来删除行,通过乘以&#39; 0&#39;按标题的长度。另外我用索引作为值来制作mat2 id的字典,认为dict查找会比索引更快。

headdict = {}
for k,v in enumerate(header):
        headdict[v] = k

total = 0                                                       # Running total - for progress meter
for h in mat1:                                                  # Loop through all mat1 ids - each row in the HC matrix
        timestart = time.clock()
        row = [h[0]] + ['0']*(length-1)                 # Empty list for new row for large matrix
        #row.append(h[0])                                       # Append mat1 id, as first item in each row
        #for i in xrange(length-1):                             # For length of large matrix header (add 0 to each row) - header -1 for first '\t'
        #       row.append('0')
        for n in xrange(1,49):                                  # Loop through each col id
                for k in mat2:                                  # For every row in mat2
                        if int(h[n]) == 1 and int(k[n]) == 1:   # If the pos (count for that particular col id) is 1 from mat1 and mat2 matrix;
                                pos = headdict[k[0]] #header.index(k[0])        # Get the position of the mat2 id
                                row[pos] = str(int(row[pos]) + 1)       # Add 1 to current position in row - [i][j] = [mat1_id][mat2_id]
        print >> out, '\t'.join(row)                            # When row is completed (All columns are compared from both mat1 and mat2 matrices; print final row to large matrix
        total += 1                                              # Update running total
        sys.stdout.write('\r\t' + str(total) + '/' + str(totmat1))  # Print progress to screen
        #sys.stdout.flush()
        timeend = time.clock()
        print timestart - timeend

2 个答案:

答案 0 :(得分:2)

这只是一个矩阵乘法。您希望将第一个矩阵乘以第二个矩阵的转置。要获得有效的矩阵运算,请获取NumPy

如果你将两个输入矩阵读入dtype numpy.int8的NumPy数组,那么计算就是

m1.dot(m2.T)

它需要几分钟,顶部。

答案 1 :(得分:0)

我不太明白这段代码的作用(单字母变量名称没有帮助)。

我的建议:尝试减少在最里面的循环中执行的操作数量。例如,您是否需要在内层重新计算pos

pos = header.index(k[0])

如果可以对嵌套循环khn进行重新排序,您可以减少代价高昂的list.index,这是O(n)操作。