我正在尝试为Keras模型提供一个巨大的稀疏矩阵。由于数据集不适合RAM,因此方法是在生成器逐批生成的数据上训练模型。
为了测试这种方法并确保我的解决方案正常工作,我稍微修改了Kera`s simple MLP on the Reuters newswire topic classification task。因此,我们的想法是比较原始模型和编辑模型。我只是将numpy.ndarray转换为scipy.sparse.csr.csr_matrix并将其提供给模型。
但是我的模型在某些时候崩溃了,我需要一只手找出原因。
以下是原始模型和我在下面添加的内容
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.utils import np_utils
from keras.preprocessing.text import Tokenizer
max_words = 1000
batch_size = 32
nb_epoch = 5
print('Loading data...')
(X_train, y_train), (X_test, y_test) = reuters.load_data(nb_words=max_words, test_split=0.2)
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
nb_classes = np.max(y_train)+1
print(nb_classes, 'classes')
print('Vectorizing sequence data...')
tokenizer = Tokenizer(nb_words=max_words)
X_train = tokenizer.sequences_to_matrix(X_train, mode='binary')
X_test = tokenizer.sequences_to_matrix(X_test, mode='binary')
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
print('Convert class vector to binary class matrix (for use with categorical_crossentropy)')
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
print('Y_train shape:', Y_train.shape)
print('Y_test shape:', Y_test.shape)
print('Building model...')
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
nb_epoch=nb_epoch, batch_size=batch_size,
verbose=1)#, validation_split=0.1)
#score = model.evaluate(X_test, Y_test,
# batch_size=batch_size, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])
输出:
Loading data...
8982 train sequences
2246 test sequences
46 classes
Vectorizing sequence data...
X_train shape: (8982, 1000)
X_test shape: (2246, 1000)
Convert class vector to binary class matrix (for use with categorical_crossentropy)
Y_train shape: (8982, 46)
Y_test shape: (2246, 46)
Building model...
Epoch 1/5
8982/8982 [==============================] - 5s - loss: 1.3932 - acc: 0.6906
Epoch 2/5
8982/8982 [==============================] - 4s - loss: 0.7522 - acc: 0.8234
Epoch 3/5
8982/8982 [==============================] - 5s - loss: 0.5407 - acc: 0.8681
Epoch 4/5
8982/8982 [==============================] - 5s - loss: 0.4160 - acc: 0.8980
Epoch 5/5
8982/8982 [==============================] - 5s - loss: 0.3338 - acc: 0.9136
Test score: 1.01453569163
Test accuracy: 0.797417631398
最后,这是我的部分
X_train_sparse = sparse.csr_matrix(X_train)
def batch_generator(X, y, batch_size):
n_batches_for_epoch = X.shape[0]//batch_size
for i in range(n_batches_for_epoch):
index_batch = range(X.shape[0])[batch_size*i:batch_size*(i+1)]
X_batch = X[index_batch,:].todense()
y_batch = y[index_batch,:]
yield(np.array(X_batch),y_batch)
model.fit_generator(generator=batch_generator(X_train_sparse, Y_train, batch_size),
nb_epoch=nb_epoch,
samples_per_epoch=X_train_sparse.shape[0])
崩溃:
Exception Traceback (most recent call last)
<ipython-input-120-6722a4f77425> in <module>()
1 model.fit_generator(generator=batch_generator(X_trainSparse, Y_train, batch_size),
2 nb_epoch=nb_epoch,
----> 3 samples_per_epoch=X_trainSparse.shape[0])
/home/kk/miniconda2/envs/tensorflow/lib/python2.7/site-packages/keras/models.pyc in fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose, callbacks, validation_data, nb_val_samples, class_weight, max_q_size, **kwargs)
648 nb_val_samples=nb_val_samples,
649 class_weight=class_weight,
--> 650 max_q_size=max_q_size)
651
652 def evaluate_generator(self, generator, val_samples, max_q_size=10, **kwargs):
/home/kk/miniconda2/envs/tensorflow/lib/python2.7/site-packages/keras/engine/training.pyc in fit_generator(self, generator, samples_per_epoch, nb_epoch, verbose, callbacks, validation_data, nb_val_samples, class_weight, max_q_size)
1356 raise Exception('output of generator should be a tuple '
1357 '(x, y, sample_weight) '
-> 1358 'or (x, y). Found: ' + str(generator_output))
1359 if len(generator_output) == 2:
1360 x, y = generator_output
Exception: output of generator should be a tuple (x, y, sample_weight) or (x, y). Found: None
我认为问题是由于samples_per_epoch设置错误造成的。如果有人可以对此发表评论,我会非常感激。
答案 0 :(得分:16)
这是我的解决方案。
def batch_generator(X, y, batch_size):
number_of_batches = samples_per_epoch/batch_size
counter=0
shuffle_index = np.arange(np.shape(y)[0])
np.random.shuffle(shuffle_index)
X = X[shuffle_index, :]
y = y[shuffle_index]
while 1:
index_batch = shuffle_index[batch_size*counter:batch_size*(counter+1)]
X_batch = X[index_batch,:].todense()
y_batch = y[index_batch]
counter += 1
yield(np.array(X_batch),y_batch)
if (counter < number_of_batches):
np.random.shuffle(shuffle_index)
counter=0
就我而言,X - 稀疏矩阵,y - 数组。
答案 1 :(得分:-1)
如果您可以使用Lasagne而不是Keras我已经使用以下功能编写了a small MLP class:
支持密集和稀疏矩阵
支持辍学和隐藏图层
支持完整的概率分布而不是单热标签,因此支持多标签培训。
支持像API一样学习scikit(适合,预测,准确等)
配置和修改非常简单