我有一些Python代码,它使用来自某些海洋模型数据的matplotlib绘制了大量非正规多边形。
我这样做是通过创建4个numpy形状的阵列(N,2)来定义每个补丁的角落,其中N是一个大数字(比如500,000)
然后我为每组角创建matplotlib Patch对象并将其添加到列表中。最后,我从Patches列表中创建了一个matplotlib PatchCollection对象。
问题是补丁生成很慢,因为它处于for循环中。我一直试图想出一种通过numpy广播来加快速度的方法,但不能完全破解它。
这是一些示例代码,带有一个小的测试数据集(显然可以快速运行)。
import numpy as np
from matplotlib.collections import PatchCollection
import matplotlib.pyplot as plt
# Cell lat/lon centers:
lons = np.array([ 323.811, 323.854, 323.811, 323.723, 324.162, 324.206, 323.723, 324.162, 323.635, 323.679])
lats = np.array([-54.887, -54.887, -54.858, -54.829, -54.829, -54.829, -54.799, -54.799, -54.770, -54.770])
# Cell size scaling factors:
cx = np.array([1,1,1,2,2,2,4,1,2,1])
cy = np.array([1,1,1,1,2,2,2,1,2,1])
# Smallest cell sizes:
min_dlon = 0.0439453
min_dlat = 0.0292969
# Calculate cell sizes based on cell scaling factor and smallest cell size
dlon = cx * min_dlon
dlat = cy * min_dlat
# calculate cell extnets....
x1 = lons - 0.5 * dlon
x2 = lons + 0.5 * dlon
y1 = lats - 0.5 * dlat
y2 = lats + 0.5 * dlat
# ... and corners
c1 = np.array([x1,y1]).T
c2 = np.array([x2,y1]).T
c3 = np.array([x2,y2]).T
c4 = np.array([x1,y2]).T
# Now loop over cells and create Patch objects from the cell corners.
# This is the bottleneck as it using a slow Python loop instead of
# fast numpy broadcasting. How can I speed this up?
ncel = np.alen(lons)
patches = []
for i in np.arange(ncel):
verts = np.vstack([c1[i], c2[i], c3[i], c4[i]])
p = plt.Polygon(verts)
patches.append(p)
# Create patch collection from list of Patches
p = PatchCollection(patches, match_original=True)
有没有办法可以加快速度呢?
答案 0 :(得分:3)
如何通过matplolib.collections
创建集合而不是创建每个多边形(或补丁)?
请看这里的示例:http://matplotlib.org/examples/api/collections_demo.html
阅读matplotlib文档:http://matplotlib.org/api/collections_api.html?highlight=polycollection#matplotlib.collections.PolyCollection
此示例代码为~10s添加200,000个多边形:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PolyCollection
import matplotlib
npol, nvrts = 200000, 5
cnts = 100 * (np.random.random((npol,2)) - 0.5)
offs = 10 * (np.random.random((nvrts,npol,2)) - 0.5)
vrts = cnts + offs
vrts = np.swapaxes(vrts, 0, 1)
z = np.random.random(npol) * 500
fig, ax = plt.subplots()
coll = PolyCollection(vrts, array=z, cmap=matplotlib.cm.jet)
ax.add_collection(coll)
ax.autoscale()
plt.show()
答案 1 :(得分:1)
patches
cc=np.stack((c1,c2,c3,c4),1)
patches = [plt.Polygon(verts) for verts in cc]
这仍然涉及一个循环,但是将堆栈移出循环(np.stack
是新函数;如果版本没有它,我可以重写它。)
我不知道这是否会节省很多时间。