在Spark Streaming

时间:2016-06-01 15:05:01

标签: java apache-spark spark-streaming

我正在尝试使用Spark Streaming编写一个简单的应用程序来读取Kafka,并对从主题中读取单词的次数进行持久计数。我有一个问题是调用非常重要的updateStateByKey方法,看起来我遇到了泛型问题,但我不确定是什么问题。

错误:

The method updateStateByKey(Function2<List<Integer>,Optional<S>,Optional<S>>) 
in the type JavaPairDStream<String,Integer> is not applicable for the arguments 
(Function2<List<Integer>,Optional<Integer>,Optional<Integer>>)  

我的代码:

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.atomic.AtomicLong;
import java.util.regex.Pattern;
import java.util.Arrays;
import scala.Tuple2;
import scala.collection.immutable.List;
import org.apache.spark.SparkConf;
import org.apache.spark.streaming.Duration;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import com.google.common.base.Optional;


public class SimpleSparkApp {
  static String appName = "Streaming";
  static String master = "local[*]";
  static String zk = "localhost:2181";
  static String consumerGroupId = "sparkStreaming";
  static String[] topics = {"testTopic", };
  static Integer numThreads = new Integer(1);
  static final Pattern SPACE = Pattern.compile(" ");
  static String checkpointDir = "/tmp";

  public static void main(String[] args) {


    SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
    JavaStreamingContext jsc = new JavaStreamingContext(conf, new Duration(10000));
    jsc.checkpoint(checkpointDir);

    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    for (String topic: topics) {
      topicMap.put(topic, numThreads);
    }

     JavaPairReceiverInputDStream<String, String> messages = 
             KafkaUtils.createStream(jsc, zk, consumerGroupId, topicMap);


     JavaDStream<String> lines = messages.map(new Function<Tuple2<String, String>, String>() {
          @Override
          public String call(Tuple2<String, String> tuple2) {
            return tuple2._2();
          }
        });

        JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
          @Override
          public Iterable<String> call(String x) {
            return Arrays.asList(SPACE.split(x));
          }
        });

        JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
          new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) {
              return new Tuple2<>(s, 1);
            }
          }).reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer i1, Integer i2) {
              return i1 + i2;
            }
          });



        Function2<List<Integer>,Optional<Integer>,Optional<Integer>> UPDATE_FUNCTION =
          new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
            @Override 
            public Optional<Integer> call(List<Integer> values, Optional<Integer> state) {
              Integer newSum = state.get();
              scala.collection.Iterator<Integer> i = values.iterator();
              while(i.hasNext()){
                newSum += i.next();
              }
              runningCount.addAndGet(newSum);
              System.out.print("Total number of words: " +  String.valueOf(runningCount.get()));
              return Optional.of(newSum);
            }
        };


        //ERROR is here
        JavaPairDStream<String, Integer> runningCounts =
                wordCounts.updateStateByKey(UPDATE_FUNCTION);

        runningCounts.print();
        jsc.start();
        jsc.awaitTermination();
  }
}

我认为泛型可能存在问题并与Scala交互?当我进入updateStateByKey时,我看到一个合适的函数声明,所以我不确定我在这里缺少什么:

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @tparam S State type
   */
  def updateStateByKey[S](updateFunc: JFunction2[JList[V], Optional[S], Optional[S]])
  : JavaPairDStream[K, S] = {
    implicit val cm: ClassTag[S] = fakeClassTag
    dstream.updateStateByKey(convertUpdateStateFunction(updateFunc))
  }

2 个答案:

答案 0 :(得分:1)

问题已修复 - 结果我输入了错误的List和Iterator类(我责备Eclipse):

注释掉:

//import scala.collection.immutable.List;
//import scala.collection.Iterator;

添加于:

import java.util.Iterator;
import java.util.List;

略微更改的更新功能:

Function2<List<Integer>,Optional<Integer>,Optional<Integer>> UPDATE_FUNCTION =
              new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
                @Override 
                public Optional<Integer> call(List<Integer> values, Optional<Integer> state) {
                  Integer newSum = state.get();
                  Iterator<Integer> i = values.iterator();
                  while(i.hasNext()){
                    newSum += i.next();
                  }
                  runningCount.addAndGet(newSum);
                  System.out.print("Total number of words: " +  String.valueOf(runningCount.get()));
                  return Optional.of(newSum);
                }
            };

答案 1 :(得分:1)

使用

import org.apache.spark.api.java.Optional 

代替

import com.google.common.base.Optional 

对于Spark 2.3及更高版本。