在会话运行之间保留张量值

时间:2016-06-01 11:07:40

标签: tensorflow

考虑以下示例:

import tensorflow as tf
import math
import numpy as np

INPUTS = 10
HIDDEN_1 = 20
BATCH_SIZE = 3


def create_graph(inputs):
    with tf.name_scope('h1'):
        weights = tf.Variable(
        tf.truncated_normal([INPUTS, HIDDEN_1],
                            stddev=1.0 / math.sqrt(float(INPUTS))),
        name='weights')
        biases = tf.Variable(tf.zeros([HIDDEN_1]),
                         name='biases')
        state = tf.Variable(tf.zeros([HIDDEN_1]), name='inner_state')
        state = tf.Print(state, [state], message=" this is state before: ")
        state = 0.9*state + 0.1*( tf.matmul(inputs, weights) + biases )
        state = tf.Print(state, [state], message=" this is state after: ")
        output = tf.nn.relu(state)
    return output

def data_iter():
    while True:
        idxs = np.random.rand(BATCH_SIZE, INPUTS)
        yield idxs

with tf.Graph().as_default():
    inputs = tf.placeholder(tf.float32, shape=(BATCH_SIZE, INPUTS))
    output = create_graph(inputs)

    sess = tf.Session()
    # Run the Op to initialize the variables.
    init = tf.initialize_all_variables()
    sess.run(init)
    iter_ = data_iter()
    for i in xrange(0, 2):
        print ("iteration: ",i)
        input_data = iter_.next()
        out = sess.run(output, feed_dict={ inputs: input_data})

我希望让张量state保持其中间值并在每次迭代时缓慢变化。但是,我所看到的是,在每个sess.run调用中,状态从零值开始:

('iteration: ', 0)
I tensorflow/core/kernels/logging_ops.cc:79]  this is state before: [0 0 0...]
I tensorflow/core/kernels/logging_ops.cc:79]  this is state after: [0.007762237 0.044753391 0.049343754...]
('iteration: ', 1)
I tensorflow/core/kernels/logging_ops.cc:79]  this is state before: [0 0 0...]
I tensorflow/core/kernels/logging_ops.cc:79]  this is state after: [0.040079735 0.074709542 0.078258425...]

如果有任何澄清如何解决此问题,我将不胜感激

修改

评论tf.Print行后,用

替换错误的作业
state = state.assign(0.9*state + 0.1*( tf.matmul(inputs, weights) + biases ))

我收到这些错误:

Traceback (most recent call last):
  File "cycles_in_graphs.py", line 33, in <module>
    output = create_graph(inputs)
  File "cycles_in_graphs.py", line 21, in create_graph
    state = state.assign(0.9*state + 0.1*( tf.matmul(inputs, weights) + biases ))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/variables.py", line 453, in assign
    return state_ops.assign(self._variable, value, use_locking=use_locking)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_state_ops.py", line 40, in assign
    use_locking=use_locking, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 655, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2156, in create_op
    set_shapes_for_outputs(ret)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1612, in set_shapes_for_outputs
    shapes = shape_func(op)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/state_ops.py", line 197, in _AssignShape
    return [op.inputs[0].get_shape().merge_with(op.inputs[1].get_shape())]
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/tensor_shape.py", line 554, in merge_with
    (self, other))
ValueError: Shapes (20,) and (3, 20) are not compatible

1 个答案:

答案 0 :(得分:1)

当您编写state = 0.9 * state + 0.1 * (tf.matmul(inputs, weights) + biases)时,您不会更新变量state的值 您仅计算0.9 * state + 0.1 * ...的值,但变量的值保持不变。

要更新tf.Variable,您应该在变量assign上使用assign_addstate功能:

state = state.assign(0.9 * state + 0.1 * (tf.matmul(inputs, weights) + biases))

所有内容都在TensorFlow tutorial on Variables中解释。