我有df data.frame
,包含8年的每日价值观。
date <- rep(as.Date(seq(as.Date("2001-05-01"),
as.Date("2008-04-30"), by= 1), format="%Y-%m-%d"), 3)
site <- c(rep("Site_1", 2557), rep("Site_2", 2557), rep("Site_3", 2557))
value <- c(as.numeric(sample(90:271, 2557, replace=T)),
as.numeric(sample(125:340, 2557, replace=T)),
as.numeric(sample(70:173, 2557, replace=T)))
df <- data.frame(date, site, value)
在这种情况下,每年从五月开始,到四月结束。
我希望{3} mean
的每个sd
获得value
和year
sites
。
我做了以下
df1 <- df %>%
dplyr::mutate(year = ifelse(date < "2002-05-01", "2001-2002",
ifelse(date < "2003-05-01", "2002-2003",
ifelse(date < "2004-05-01", "2003-2004",
ifelse(date < "2005-05-01", "2004-2005",
ifelse(date < "2006-05-01", "2005-2006",
ifelse(date < "2007-05-01", "2006-2007",
ifelse(date < "2008-05-01", "2007-2008", NA )))))))) %>%
dplyr::select(site, year, value) %>%
dplyr::group_by(site, year) %>%
dplyr::summarise_each(funs(
mean(.),
sd(.)
))
它给了我想要的东西。但是,如果我有30到50年的数据,现在是时候了。另外,如果每个新的data.frame
具有不同的开始月份,我每次都需要修改ifelse()
以分配年份ID,以便能够按year
进行分组并执行不同的计算。
如果开始月份是除1月以外的任何月份,是否有任何直接的方式来分配yearID?
答案 0 :(得分:6)
怎么样?
library(dplyr)
df %>%
group_by(year=cut(date, seq(as.Date("2001-05-01"), as.Date("2008-05-01"), "1 year"), include.lowest = TRUE), site) %>%
summarise(sd = sd(value), mean = mean(value))
# Source: local data frame [21 x 4]
# Groups: year [?]
#
# year site sd mean
# (fctr) (fctr) (dbl) (dbl)
# 1 2001-05-01 Site_1 51.82622 182.5890
# 2 2001-05-01 Site_2 63.33385 241.1260
# 3 2001-05-01 Site_3 30.04042 120.1233
# 4 2002-05-01 Site_1 51.66325 182.6658
# 5 2002-05-01 Site_2 62.87470 236.4192
# 6 2002-05-01 Site_3 28.54769 122.2329
# 7 2003-05-01 Site_1 50.97588 179.0874
# 8 2003-05-01 Site_2 63.48810 227.1230
# 9 2003-05-01 Site_3 30.87933 120.4918
# 10 2004-05-01 Site_1 53.19898 176.5589
# .. ... ... ... ...
答案 1 :(得分:6)
使用包lubridate
,您可以先添加year
列,如下所示:
library(lubridate)
df$year <- ifelse(month(ymd(df$date)) < 5,
paste(year(ymd(df$date))-1, year(ymd(df$date)), sep="-"),
paste(year(ymd(df$date)), year(ymd(df$date))+1, sep="-"))
df %>% dplyr::select(site, year, value) %>%
dplyr::group_by(site, year) %>%
dplyr::summarise_each(funs(
mean(.),
sd(.)
))
Source: local data frame [6 x 4]
Groups: site [1]
site year mean sd
(fctr) (chr) (dbl) (dbl)
1 Site_1 2001-2002 178.2055 54.58277
2 Site_1 2002-2003 176.9342 49.64435
3 Site_1 2003-2004 177.4153 52.20447
4 Site_1 2004-2005 179.5370 52.77848
5 Site_1 2005-2006 180.3671 51.41292
6 Site_1 2006-2007 179.3616 53.02291