目前,我正在使用Alexnet进行分类任务。
每个输入样本的大小为480 * 680,如下所示:
使用普通网络,由批量大小为8的256 * 256(在预处理步骤中生成)的裁剪输入提供,使我的准确率达到92%。
但是,当我尝试使用以下裁剪层生成每种(480 * 680)样本(角落加中心裁剪)的5种作物时:
# this is the reference blob of the cropping process which determines cropping size
layer {
name: "reference-blob"
type: "Input"
top: "reference"
input_param { shape: { dim: 8 dim: 3 dim: 227 dim: 227 } }
}
# upper-left crop
layer{
name: "crop-1"
type: "Crop"
bottom: "data"
bottom: "reference"
top: "crop-1"
crop_param {
axis: 2
offset: 1
offset: 1
}
}
# upper-right crop
layer{
name: "crop-2"
type: "Crop"
bottom: "data"
bottom: "reference"
top: "crop-2"
crop_param {
axis: 2
offset: 1
offset: 412
}
}
# lower-left crop
layer{
name: "crop-3"
type: "Crop"
bottom: "data"
bottom: "reference"
top: "crop-3"
crop_param {
axis: 2
offset: 252
offset: 1
}
}
# lower-right crop
layer{
name: "crop-4"
type: "Crop"
bottom: "data"
bottom: "reference"
top: "crop-4"
crop_param {
axis: 2
offset: 252
offset: 412
}
}
# center crop
layer{
name: "crop-5"
type: "Crop"
bottom: "data"
bottom: "reference"
top: "crop-5"
crop_param {
axis: 2
offset: 127
offset: 207
}
}
# concat all the crop results to feed the next layer
layer{
name: "crop_concat"
type: "Concat"
bottom: "crop-1"
bottom: "crop-2"
bottom: "crop-3"
bottom: "crop-4"
bottom: "crop-5"
top: "all_crops"
concat_param {
axis: 0
}
}
# generating enough labels for all the crop results
layer{
name: "label_concat"
type: "Concat"
bottom: "label"
bottom: "label"
bottom: "label"
bottom: "label"
bottom: "label"
top: "all-labels"
concat_param {
axis: 0
}
}
这导致准确率达到90.6%,这很奇怪。
任何想法?
答案 0 :(得分:1)
裁剪版本的典型用法是在识别过滤器的规范位置获得关键功能。例如,典型的5种方法经常发现“靠近图像中间的动物脸”经常足以使其从最后出现2-4层作为学习图标。
由于纹理往往会重复某些特性,因此在裁剪照片时没有这样的优势:你呈现5个较小的纹理实例,具有相对较大的纹理,而不是完整的图像。