Pocketsphinx无法准确识别印度语单词

时间:2016-05-31 13:02:27

标签: android speech-recognition pocketsphinx-android

我正在为语音命令开发app。我使用了pocketsphinx demo。我也使用http://www.speech.cs.cmu.edu/tools/lextool.html创建了字典 但是当我说话时,它不能识别正确的单词而不是它给出另一个单词。以下是我的代码

package edu.cmu.pocketsphinx.demo;

import android.app.Service;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.IBinder;
import android.util.Log;
import android.widget.Toast;

import java.io.File;
import java.io.IOException;
import java.util.HashMap;

import edu.cmu.pocketsphinx.Assets;
import edu.cmu.pocketsphinx.Hypothesis;
import edu.cmu.pocketsphinx.RecognitionListener;
import edu.cmu.pocketsphinx.SpeechRecognizer;
import edu.cmu.pocketsphinx.SpeechRecognizerSetup;

import static android.widget.Toast.makeText;

public class FirstService  extends  Service implements
        RecognitionListener {

    /* Named searches allow to quickly reconfigure the decoder */
    private static final String KWS_SEARCH = "wakeup";
    //    private static final String FORECAST_SEARCH = "pimple";
//    private static final String DIGITS_SEARCH = "help";
//    private static final String PHONE_SEARCH = "phones";
    private static final String MENU_SEARCH = "menu";

    /* Keyword we are looking for to activate menu */
    private static final String KEYPHRASE = "hello";

    /* Used to handle permission request */
    private static final int PERMISSIONS_REQUEST_RECORD_AUDIO = 1;

    private SpeechRecognizer recognizer;
    private HashMap<String, Integer> captions;

    private static String TAG = "Inchoo.net tutorial";

    @Override
    public IBinder onBind(Intent arg0) {
        /* TODO Auto-generated method stub */
        return null;
    }

    @Override
    public void onStart(Intent intent, int startId) {
        // TODO Auto-generated method stub
        super.onStart(intent, startId);
        Log.d(TAG, "FirstService started");
        runRecognizerSetup();
       // this.stopSelf();
    }

    @Override
    public void onDestroy() {
        // TODO Auto-generated method stub
        super.onDestroy();
        Log.d(TAG, "FirstService destroyed");
    }
    private void runRecognizerSetup() {
        // Recognizer initialization is a time-consuming and it involves IO,
        // so we execute it in async task
        new AsyncTask<Void, Void, Exception>() {
            @Override
            protected Exception doInBackground(Void... params) {
                try {
                    Assets assets = new Assets(FirstService.this);
                    File assetDir = assets.syncAssets();
                    setupRecognizer(assetDir);
                } catch (IOException e) {
                    return e;
                }
                return null;
            }

            @Override
            protected void onPostExecute(Exception result) {
                if (result != null) {

                } else {
                    switchSearch(KWS_SEARCH);
                }
            }
        }.execute();
    }




    /**
     * In partial result we get quick updates about current hypothesis. In
     * keyword spotting mode we can react here, in other modes we need to wait
     * for final result in onResult.
     */
    @Override
    public void onPartialResult(Hypothesis hypothesis) {
        if (hypothesis == null)
            return;

        String text = hypothesis.getHypstr();
        Log.d("TEMP RESULT",text);

        /// if (text.equals(KEYPHRASE))
        switchSearch(MENU_SEARCH);
//        else if (text.equals(DIGITS_SEARCH))
//            switchSearch(DIGITS_SEARCH);
//        else if (text.equals(PHONE_SEARCH))
//            switchSearch(PHONE_SEARCH);
//        else if (text.equals(FORECAST_SEARCH))
//            switchSearch(FORECAST_SEARCH);
        //  else
        //((TextView) findViewById(R.id.result_text)).setText(text);
    }

    /**
     * This callback is called when we stop the recognizer.
     */
    @Override
    public void onResult(Hypothesis hypothesis) {


        if (hypothesis != null) {
            String text = hypothesis.getHypstr();
            Log.d(" RESULT",text);
            makeText(getApplicationContext(), text, Toast.LENGTH_SHORT).show();
        }
    }

    @Override
    public void onBeginningOfSpeech() {
    }

    /**
     * We stop recognizer here to get a final result
     */
    @Override
    public void onEndOfSpeech() {

        Log.d("getSearchName()",recognizer.getSearchName());
        if (!recognizer.getSearchName().equals(KWS_SEARCH))
            switchSearch(KWS_SEARCH);
    }

    private void switchSearch(String searchName) {
        recognizer.stop();

        // If we are not spotting, start listening with timeout (10000 ms or 10 seconds).
        if (searchName.equals(KWS_SEARCH))
            recognizer.startListening(searchName);
        else
            recognizer.startListening(searchName, 10000);

//        String caption = getResources().getString(captions.get(searchName));
//        ((TextView) findViewById(R.id.caption_text)).setText(caption);
    }

    private void setupRecognizer(File assetsDir) throws IOException {
        // The recognizer can be configured to perform multiple searches
        // of different kind and switch between them

        recognizer = SpeechRecognizerSetup.defaultSetup()
                .setAcousticModel(new File(assetsDir, "en-us-ptm"))
                .setDictionary(new File(assetsDir, "cmudict-en-us.dict"))

                .setRawLogDir(assetsDir) // To disable logging of raw audio comment out this call (takes a lot of space on the device)
                .setKeywordThreshold(1e-45f) // Threshold to tune for keyphrase to balance between false alarms and misses
                .setBoolean("-allphone_ci", true)  // Use context-independent phonetic search, context-dependent is too slow for mobile


                .getRecognizer();
        recognizer.addListener(this);

        /** In your application you might not need to add all those searches.
         * They are added here for demonstration. You can leave just one.
         */

        // Create keyword-activation search.
        recognizer.addKeyphraseSearch(KWS_SEARCH, KEYPHRASE);

        // Create grammar-based search for selection between demos
        File menuGrammar = new File(assetsDir, "menu.gram");
        recognizer.addGrammarSearch(MENU_SEARCH, menuGrammar);

//        // Create grammar-based search for digit recognition
//        File digitsGrammar = new File(assetsDir, "digits.gram");
//        recognizer.addGrammarSearch(DIGITS_SEARCH, digitsGrammar);
//
//        // Create language model search
//        File languageModel = new File(assetsDir, "weather.dmp");
//        recognizer.addNgramSearch(FORECAST_SEARCH, languageModel);
//
//        // Phonetic search
//        File phoneticModel = new File(assetsDir, "en-phone.dmp");
//        recognizer.addAllphoneSearch(PHONE_SEARCH, phoneticModel);
    }

    @Override
    public void onError(Exception error) {

    }

    @Override
    public void onTimeout() {

        Log.d("TIME OUt","TIMEOUT"+KWS_SEARCH);
        switchSearch(KWS_SEARCH);
    }
}

1 个答案:

答案 0 :(得分:0)

默认模式是为美国英语创建的,它不支持印度英语,并且预计印度英语的准确度不高。

印度英语当然是我们的首要任务,但我们需要当地人帮助我们建立系统。你作为一个本地人可以提供很多帮助,否则你必须等到有人收集到足够的数据。