无法理解应用于毕业行为的theano扫描

时间:2016-05-30 15:10:47

标签: python theano

所以这就是事情:我必须在下面进行编码,当我应用毕业时,一切都运行正常,它正确地计算了渐变。但是,如果我wrt=i,那么它会给我一个DisconnectedInputError。为什么会这样,我怎么能与i区分?

def step(i, A):
    return A*i, i

A = T.scalar("A")
outputs, _ = theano.scan(step, sequences=T.arange(2,6), non_sequences=A)
res, i = outputs
grad = T.grad(cost=res[3], wrt=A)
func = theano.function([A],[grad, res, i])

print func(3.0)

Traceback (most recent call last):
  File "test.py", line 17, in <module>
    grad = T.grad(cost=res[3], wrt=i)
  File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 545, in grad
    handle_disconnected(elem)
  File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 532, in handle_disconnected
    raise DisconnectedInputError(message)
theano.gradient.DisconnectedInputError: grad method was asked to compute the gradient with respect to a variable that is not part of the computational graph of the cost, or is used only by a non-differentiable operator: for{cpu,scan_fn}.1
Backtrace when the node is created:
  File "test.py", line 15, in <module>
    outputs, _ = theano.scan(step, sequences=T.arange(2,6), non_sequences=A)

1 个答案:

答案 0 :(得分:0)

要将wrt区分为i,您需要在扫描操作之前声明整个i数组,并使用整个数组来计算它的渐变。

i_array = T.arange(2,6)

def step(i, A):
    return A*i, i

A = T.scalar("A")
A.tag.test_value = 5.0

outputs, _ = theano.scan(step, sequences=i_array, non_sequences=A)
res, i = outputs
grad = T.grad(cost=res[3], wrt=i_array)
func = theano.function([A],[grad, res, i])

print func(3.0)

如果你想要i的特定元素,那么你应该在计算i_array

的毕业后使用索引选择它