所以这就是事情:我必须在下面进行编码,当我应用毕业时,一切都运行正常,它正确地计算了渐变。但是,如果我wrt=i
,那么它会给我一个DisconnectedInputError。为什么会这样,我怎么能与i区分?
def step(i, A):
return A*i, i
A = T.scalar("A")
outputs, _ = theano.scan(step, sequences=T.arange(2,6), non_sequences=A)
res, i = outputs
grad = T.grad(cost=res[3], wrt=A)
func = theano.function([A],[grad, res, i])
print func(3.0)
Traceback (most recent call last):
File "test.py", line 17, in <module>
grad = T.grad(cost=res[3], wrt=i)
File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 545, in grad
handle_disconnected(elem)
File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 532, in handle_disconnected
raise DisconnectedInputError(message)
theano.gradient.DisconnectedInputError: grad method was asked to compute the gradient with respect to a variable that is not part of the computational graph of the cost, or is used only by a non-differentiable operator: for{cpu,scan_fn}.1
Backtrace when the node is created:
File "test.py", line 15, in <module>
outputs, _ = theano.scan(step, sequences=T.arange(2,6), non_sequences=A)
答案 0 :(得分:0)
要将wrt区分为i,您需要在扫描操作之前声明整个i数组,并使用整个数组来计算它的渐变。
i_array = T.arange(2,6)
def step(i, A):
return A*i, i
A = T.scalar("A")
A.tag.test_value = 5.0
outputs, _ = theano.scan(step, sequences=i_array, non_sequences=A)
res, i = outputs
grad = T.grad(cost=res[3], wrt=i_array)
func = theano.function([A],[grad, res, i])
print func(3.0)
如果你想要i
的特定元素,那么你应该在计算i_array