我有代码在集群之后计算平方误差的集合和,我主要从Spark mllib源代码中获取。
当我使用spark API运行类似代码时,它在许多不同(分布式)作业中运行并成功运行。当我运行它我的代码(它应该与Spark代码做同样的事情)我得到一个堆栈溢出错误。有什么想法吗?
以下是代码:
import java.util.Arrays
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD
import org.apache.spark.api.java.JavaRDD
import breeze.linalg.{axpy => brzAxpy, inv, svd => brzSvd, DenseMatrix => BDM, DenseVector => BDV,
MatrixSingularException, SparseVector => BSV, CSCMatrix => BSM, Matrix => BM}
val EPSILON = {
var eps = 1.0
while ((1.0 + (eps / 2.0)) != 1.0) {
eps /= 2.0
}
eps
}
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
def fastSquaredDistance(
v1: Vector,
norm1: Double,
v2: Vector,
norm2: Double,
precision: Double = 1e-6): Double = {
val n = v1.size
require(v2.size == n)
require(norm1 >= 0.0 && norm2 >= 0.0)
val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
val normDiff = norm1 - norm2
var sqDist = 0.0
/*
* The relative error is
* <pre>
* EPSILON * ( \|a\|_2^2 + \|b\\_2^2 + 2 |a^T b|) / ( \|a - b\|_2^2 ),
* </pre>
* which is bounded by
* <pre>
* 2.0 * EPSILON * ( \|a\|_2^2 + \|b\|_2^2 ) / ( (\|a\|_2 - \|b\|_2)^2 ).
* </pre>
* The bound doesn't need the inner product, so we can use it as a sufficient condition to
* check quickly whether the inner product approach is accurate.
*/
val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
if (precisionBound1 < precision) {
sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
} else if (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
val dotValue = dot(v1, v2)
sqDist = math.max(sumSquaredNorm - 2.0 * dotValue, 0.0)
val precisionBound2 = EPSILON * (sumSquaredNorm + 2.0 * math.abs(dotValue)) /
(sqDist + EPSILON)
if (precisionBound2 > precision) {
sqDist = Vectors.sqdist(v1, v2)
}
} else {
sqDist = Vectors.sqdist(v1, v2)
}
sqDist
}
def findClosest(
centers: TraversableOnce[Vector],
point: Vector): (Int, Double) = {
var bestDistance = Double.PositiveInfinity
var bestIndex = 0
var i = 0
centers.foreach { center =>
// Since `\|a - b\| \geq |\|a\| - \|b\||`, we can use this lower bound to avoid unnecessary
// distance computation.
var lowerBoundOfSqDist = Vectors.norm(center, 2.0) - Vectors.norm(point, 2.0)
lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
if (lowerBoundOfSqDist < bestDistance) {
val distance: Double = fastSquaredDistance(center, Vectors.norm(center, 2.0), point, Vectors.norm(point, 2.0))
if (distance < bestDistance) {
bestDistance = distance
bestIndex = i
}
}
i += 1
}
(bestIndex, bestDistance)
}
def pointCost(
centers: TraversableOnce[Vector],
point: Vector): Double =
findClosest(centers, point)._2
def clusterCentersIter: Iterable[Vector] =
clusterCenters.map(p => p)
def computeCostZep(indata: RDD[Vector]): Double = {
val bcCenters = indata.context.broadcast(clusterCenters)
indata.map(p => pointCost(bcCenters.value, p)).sum()
}
computeCostZep(projectedData)
我相信我使用所有与spark相同的并行化工作,但它对我不起作用。我的代码分发/帮助查看代码中发生内存溢出的原因是非常有帮助的
以下是spark中源代码的链接,它非常相似: KMeansModel和KMeans
这是运行良好的代码:
val clusters = KMeans.train(projectedData, numClusters, numIterations)
val clusterCenters = clusters.clusterCenters
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(projectedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
以下是错误输出:
org.apache.spark.SparkException:作业因阶段失败而中止:阶段94.0中的任务1失败4次,最近失败:阶段94.0中失去任务1.3(TID 37663,ip-172-31-13-209) .ec2.internal):java.lang.StackOverflowError at $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$$$的wC $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ iwC $$ iwC.dot(:226)at $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$$$的wC $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC万国表$$ $$ IWC $$ iwC.dot(:226) ...
以后再下来:
驱动程序堆栈跟踪:at org.apache.spark.scheduler.DAGScheduler.org $ apache $ spark $ scheduler $ DAGScheduler $$ failJobAndIndependentStages(DAGScheduler.scala:1431)at org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1.apply(DAGScheduler.scala:1419)at org.apache.spark.scheduler.DAGScheduler $$ anonfun $ abortStage $ 1.apply(DAGScheduler.scala:1418)at scala.collection.mutable.ResizableArray $ class.foreach(ResizableArray .scala:59)位于org.apache.spark上,org.apache.sport上的scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)。 DAGScheduler $$ anonfun $ handleTaskSetFailed $ 1.apply(DAGScheduler.scala:799)at org.apache.spark.scheduler.DAGScheduler $$ anonfun $ handleTaskSetFailed $ 1.apply(DAGScheduler.scala:799)at scala.Option.foreach(Option。 scala:236)org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGSchedul) er.scala:1640)org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)at org.apache.spark .util.EventLoop $$ anon $ 1.run(EventLoop.scala:48)org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)at org.apache.spark.SparkContext.runJob(SparkContext.scala) :1832)org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)atg.apache.spark.rdd.RDD $$ anonfun $ fold $ 1.apply(RDD.scala:1088)at org.apache。来自org.apache.spark.rdd.RDD.withScope(RDD。 scala:316)org.apache.spark.rdd.RDD.fold(RDD.scala:1082)at org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply $ mcD $ sp(DoubleRDDFunctions.scala: 34)在org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply(DoubleRDDFunctions.scala:34)a t org.apache中的org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $ sum $ 1.apply(DoubleRDDFunctions.scala:34)org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:150)at org.apache。 spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:111)atg.apache.spark.rdd.RDD.withScope(RDD.scala:316)org.apache.spark.rdd.DoubleRDDFunctions.sum(DoubleRDDFunctions.scala) :33)
答案 0 :(得分:3)
看起来很简单:你在这里以递归方式调用dot
方法:
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
对dot
的后续递归调用使用与前者相同的相同的参数 - 因此递归决不会有结论。
stacktrace也告诉你 - 注意位置在 dot 方法:
$ iwC的java.lang.StackOverflowError $ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$ $$的wC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ IWC $$ iwC.dot (:226)