我有一个看起来像这样的JavaRDD。
[
[A,8]
[B,3]
[C,5]
[A,2]
[B,8]
...
...
]
我想要我的结果 意味着
[
[A,5]
[B,5.5]
[C,5]
]
如何仅使用Java RDD执行此操作。 P.S:我想避免使用groupBy操作,所以我没有使用DataFrames。
答案 0 :(得分:2)
你走了:
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.util.StatCounter;
import scala.Tuple2;
import scala.Tuple3;
import java.util.Arrays;
import java.util.List;
public class AggregateByKeyStatCounter {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("AggregateByKeyStatCounter").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
List<Tuple2<String, Integer>> myList = Arrays.asList(new Tuple2<>("A", 8), new Tuple2<>("B", 3), new Tuple2<>("C", 5),
new Tuple2<>("A", 2), new Tuple2<>("B", 8));
JavaRDD<Tuple2<String, Integer>> data = sc.parallelize(myList);
JavaPairRDD<String, Integer> pairs = JavaPairRDD.fromJavaRDD(data);
/* I'm actually using aggregateByKey to perform StatCounter
aggregation, so actually you can even have more statistics available */
JavaRDD<Tuple3<String, Double, Double>> output = pairs
.aggregateByKey(
new StatCounter(),
StatCounter::merge,
StatCounter::merge)
.map(x -> new Tuple3<String, Double, Double>(x._1(), x._2().stdev(), x._2().mean()));
output.collect().forEach(System.out::println);
}
}
答案 1 :(得分:0)
您可以使用reduceByKey并计算每个键的总和和计数,然后按每个键划分它们。
val means: RDD[(String, Double)] = rdd
.map(x => (x._1, (x._2, 1))) // add 1 for each element for the count
.reduceByKey((a,b) => (a._1+b._1, a._2+b._2)) // create a tuple (count, sum) for each key
.map{ case (k, v) => (k, v._1 / v._2) } // calculate mean for each key