此主题已被触及here,但没有说明如何创建3D绘图并在指定(x,y)
高度的z
平面中插入图像。
因此,为了得出一个简单且可重现的案例,假设我使用mplot3d
创建了这样的3D图:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-1.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
plt.show()
在z=min(z)-1
级别,其中-1
是避免重叠的视觉偏移,我想插入代表的元素其中曲线显示一定的值。 怎么做?
在这个例子中,我不关心元素及其值之间的完美匹配,因此请随意上传您喜欢的任何图像。另外,有没有办法让图像旋转,以防有人对匹配不满意?
修改
这是类似3D直方图的视觉示例。级别z=0
的灰色形状是条形显示某个z
值的元素。 Source.
答案 0 :(得分:4)
使用plot_surface
通过facecolors
参数绘制图像。
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from matplotlib._png import read_png
from matplotlib.cbook import get_sample_data
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fn = get_sample_data("./lena.png", asfileobj=False)
arr = read_png(fn)
# 10 is equal length of x and y axises of your surface
stepX, stepY = 10. / arr.shape[0], 10. / arr.shape[1]
X1 = np.arange(-5, 5, stepX)
Y1 = np.arange(-5, 5, stepY)
X1, Y1 = np.meshgrid(X1, Y1)
# stride args allows to determine image quality
# stride = 1 work slow
ax.plot_surface(X1, Y1, -2.01, rstride=1, cstride=1, facecolors=arr)
plt.show()
如果您需要添加值,请使用PathPatch
:
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import mpl_toolkits.mplot3d.art3d as art3d
from matplotlib.text import TextPath
from matplotlib.transforms import Affine2D
from matplotlib.patches import PathPatch
def text3d(ax, xyz, s, zdir="z", size=None, angle=0, usetex=False, **kwargs):
x, y, z = xyz
if zdir == "y":
xy1, z1 = (x, z), y
elif zdir == "y":
xy1, z1 = (y, z), x
else:
xy1, z1 = (x, y), z
text_path = TextPath((0, 0), s, size=size, usetex=usetex)
trans = Affine2D().rotate(angle).translate(xy1[0], xy1[1])
p1 = PathPatch(trans.transform_path(text_path), **kwargs)
ax.add_patch(p1)
art3d.pathpatch_2d_to_3d(p1, z=z1, zdir=zdir)
# main
fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, .25)
Y = np.arange(-5, 5, .25)
Xg, Yg = np.meshgrid(X, Y)
R = np.sqrt(Xg**2 + Yg**2)
Z = np.sin(R)
surf = ax.plot_surface(Xg, Yg, Z, rstride=1, cstride=1, cmap=cm.winter,
linewidth=0, antialiased=True)
ax.set_zlim(-2.01, 1.01)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
# add pathces with values
for i,x in enumerate(X[::4]):
for j,y in enumerate(Y[::4]):
text3d(ax, (x, y, -2.01), "{0:.1f}".format(Z[i][j]), zdir="z", size=.5, ec="none", fc="k")
plt.show()