我使用以下脚本来测试GPU是否正常工作:
#!/usr/bin/env python
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print f.maker.fgraph.toposort()
t0 = time.time()
for i in xrange(iters):
r = f()
t1 = time.time()
print 'Looping %d times took' % iters, t1 - t0, 'seconds'
print 'Result is', r
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
当我运行它时,我得到:
有趣的部分是在最后:
ERROR (theano.sandbox.cuda): Failed to compile cuda_ndarray.cu: ('nvcc return status', 1, 'for cmd', 'nvcc -shared -O3 -m64 -Xcompiler -DCUDA_NDARRAY_CUH=c72d035fdf91890f3b36710688069b2e,-DNPY_NO_DEPRECATED_API=NPY_1_7_API_VERSION,-fPIC,-fvisibility=hidden -Xlinker -rpath,/home/moose/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.11+-64/cuda_ndarray -I/home/moose/.local/lib/python2.7/site-packages/theano/sandbox/cuda -I/usr/lib/python2.7/dist-packages/numpy/core/include -I/usr/include/python2.7 -I/home/moose/.local/lib/python2.7/site-packages/theano/gof -o /home/moose/.theano/compiledir_Linux-4.4--generic-x86_64-with-Ubuntu-16.04-xenial-x86_64-2.7.11+-64/cuda_ndarray/cuda_ndarray.so mod.cu -L/usr/lib -lcublas -lpython2.7 -lcudart')
WARNING (theano.sandbox.cuda): CUDA is installed, but device gpu is not available (error: cuda unavailable)
V7.5.17
)安装了CUDA。 nvcc --version
有效。CUDA_ROOT=/usr/bin/
和LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/
(我不确定这是否正确)我的~/.theanorc
是
[global]
exception_verbosity=high
device=gpu
floatX=float32
[cuda]
root=/usr/bin/
我认为标准回购的安装可能会与手动安装有所不同。以下是一些可能会发现一些问题的路径:
/usr/bin/nvcc
/usr/lib/x86_64-linux-gnu/libcuda.so
/usr/lib/x86_64-linux-gnu/libcudart.so
/usr/lib/nvidia-cuda-toolkit
/usr/include/cudnn.h
我怎样才能让它发挥作用?
答案 0 :(得分:4)
我不确定是什么解决了这个问题,但是以下一个或两个(source)
sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev libblas-dev git
echo -e "\n[nvcc]\nflags=-D_FORCE_INLINES\n" >> ~/.theanorc
答案 1 :(得分:0)
我正在写一个更一般的答案,以防其他人发现自己处于类似情况。
首先,请参阅here所述安装theano依赖项。您应该按照here所述安装nvidia驱动程序,使用sudo ubuntu-drivers devices
确定推荐的驱动程序,并使用sudo apt-get install nvidia-xxx
安装它(此时xxx = 375)。然后通过打开“其他驱动程序”窗口(来自终端software-properties-gtk --open-tab=4
)来查看正在使用的nvidia驱动程序。按如下方式设置〜/ .theanorc文本文件:
[global]
exception_verbosity=high
device=gpu
floatX=float32
[cuda]
root=/usr/bin/
[nvcc]
flags=-D_FORCE_INLINES
[lib]
cnmem = 1
[lib]部分不是必需的,但在我的笔记本电脑上,将它添加到.theanorc时,性能提高了大约2倍。