我已经在video tutorial之后在Processing 3.1.1上实现了反应扩散算法。我已经对我的代码进行了一些调整,比如在圆环空间上实现它,而不是像视频那样有限的框。
然而,我遇到了这个恼人的问题,代码运行速度非常慢,与画布大小成正比(更大,更慢)。有了这个,我尝试根据我的(有限的)知识来优化代码。我做的主要是减少循环次数。
即便如此,我的代码仍然运行缓慢。
因为我注意到使用尺寸为50 x 50的画布,算法以很快的速度运行,我尝试使其成为多线程,这样画布将在线程之间划分,每个线程都会为画布的一个小区域运行算法。
所有线程都从画布的当前状态读取,并且所有线程都写入画布的未来状态。然后使用Processing的像素阵列更新画布。
然而,即使使用多线程,我也没有看到任何性能提升。相反,我看到它变得更糟。现在有时画布在渲染状态和完全白色之间闪烁,在某些情况下,它甚至不会渲染。
我非常确定我做错了什么,或者我可能采取了错误的方法来优化此算法。现在,我正在寻求帮助,以了解我做错了什么,以及如何修复或改进我的代码。
编辑:使用PImage对象缓冲区提前实现计算和渲染已消除了闪烁,但背景上的计算步骤运行速度不足以填充缓冲区。
我的处理草图如下,并提前感谢。
ArrayList<PImage> buffer = new ArrayList<PImage>();
Thread t;
Buffer b;
PImage currentImage;
Point[][] grid; //current state
Point[][] next; //future state
//Reaction-Diffusion algorithm parameters
final float dA = 1.0;
final float dB = 0.5;
//default: f = 0.055; k = 0.062
//mitosis: f = 0.0367; k = 0.0649
float feed = 0.055;
float kill = 0.062;
float dt = 1.0;
//multi-threading parameters to divide canvas
int threadSizeX = 50;
int threadSizeY = 50;
//red shading colors
color red = color(255, 0, 0);
color white = color(255, 255, 255);
color black = color(0, 0, 0);
//if redShader is false, rendering will use a simple grayscale mode
boolean redShader = true;
//simple class to hold chemicals A and B amounts
class Point
{
float a;
float b;
Point(float a, float b)
{
this.a = a;
this.b = b;
}
}
void setup()
{
size(300, 300);
//initialize matrices with A = 1 and B = 0
grid = new Point[width][];
next = new Point[width][];
for (int x = 0; x < width; x++)
{
grid[x] = new Point[height];
next[x] = new Point[height];
for (int y = 0; y < height; y++)
{
grid[x][y] = new Point(1.0, 0.0);
next[x][y] = new Point(1.0, 0.0);
}
}
int a = (int) random(1, 20); //seed some areas with B = 1.0
for (int amount = 0; amount < a; amount++)
{
int siz = 2;
int x = (int)random(width);
int y = (int)random(height);
for (int i = x - siz/2; i < x + siz/2; i++)
{
for (int j = y - siz/2; j < y + siz/2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
grid[i2][j2].b = 1.0;
}
}
}
initializeThreads();
}
/**
* Divide canvas between threads
*/
void initializeThreads()
{
ArrayList<Reaction> reactions = new ArrayList<Reaction>();
for (int x1 = 0; x1 < width; x1 += threadSizeX)
{
for (int y1 = 0; y1 < height; y1 += threadSizeY)
{
int x2 = x1 + threadSizeX;
int y2 = y1 + threadSizeY;
if (x2 > width - 1)
{
x2 = width - 1;
}
if (y2 > height - 1)
{
y2 = height - 1;
}
Reaction r = new Reaction(x1, y1, x2, y2);
reactions.add(r);
}
}
b = new Buffer(reactions);
t = new Thread(b);
t.start();
}
void draw()
{
if (buffer.size() == 0)
{
return;
}
PImage i = buffer.get(0);
image(i, 0, 0);
buffer.remove(i);
//println(frameRate);
println(buffer.size());
//saveFrame("output/######.png");
}
/**
* Faster than calling built in pow() function
*/
float pow5(float x)
{
return x * x * x * x * x;
}
class Buffer implements Runnable
{
ArrayList<Reaction> reactions;
boolean calculating = false;
public Buffer(ArrayList<Reaction> reactions)
{
this.reactions = reactions;
}
public void run()
{
while (true)
{
if (buffer.size() < 1000)
{
calculate();
if (isDone())
{
buffer.add(currentImage);
Point[][] temp;
temp = grid;
grid = next;
next = temp;
calculating = false;
}
}
}
}
boolean isDone()
{
for (Reaction r : reactions)
{
if (!r.isDone())
{
return false;
}
}
return true;
}
void calculate()
{
if (calculating)
{
return;
}
currentImage = new PImage(width, height);
for (Reaction r : reactions)
{
r.calculate();
}
calculating = true;
}
}
class Reaction
{
int x1;
int x2;
int y1;
int y2;
Thread t;
public Reaction(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public void calculate()
{
Calculator c = new Calculator(x1, y1, x2, y2);
t = new Thread(c);
t.start();
}
public boolean isDone()
{
if (t.getState() == Thread.State.TERMINATED)
{
return true;
} else
{
return false;
}
}
}
class Calculator implements Runnable
{
int x1;
int x2;
int y1;
int y2;
//weights for calculating the Laplacian for A and B
final float[][] laplacianWeights = {{0.05, 0.2, 0.05},
{0.2, -1, 0.2},
{0.05, 0.2, 0.05}};
/**
* x1, x2, y1, y2 delimit a rectangle. The object will only work within it
*/
public Calculator(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
//println("x1: " + x1 + ", y1: " + y1 + ", x2: " + x2 + ", y2: " + y2);
}
@Override
public void run()
{
reaction();
show();
}
public void reaction()
{
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
float a = grid[x][y].a;
float b = grid[x][y].b;
float[] l = laplaceAB(x, y);
float a2 = reactionDiffusionA(a, b, l[0]);
float b2 = reactionDiffusionB(a, b, l[1]);
next[x][y].a = a2;
next[x][y].b = b2;
}
}
}
float reactionDiffusionA(float a, float b, float lA)
{
return a + ((dA * lA) - (a * b * b) + (feed * (1 - a))) * dt;
}
float reactionDiffusionB(float a, float b, float lB)
{
return b + ((dB * lB) + (a * b * b) - ((kill + feed) * b)) * dt;
}
/**
* Calculates Laplacian for both A and B at same time, to reduce amount of loops executed
*/
float[] laplaceAB(int x, int y)
{
float[] l = {0.0, 0.0};
for (int i = x - 1; i < x + 2; i++)
{
for (int j = y - 1; j < y + 2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
int weightX = (i - x) + 1;
int weightY = (j - y) + 1;
l[0] += laplacianWeights[weightX][weightY] * grid[i2][j2].a;
l[1] += laplacianWeights[weightX][weightY] * grid[i2][j2].b;
}
}
return l;
}
public void show()
{
currentImage.loadPixels();
//renders the canvas using the pixel array
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
float a = next[x][y].a;
float b = next[x][y].b;
int pix = x + y * width;
float diff = (a - b);
color c;
if (redShader) //aply red shading
{
float thresh = 0.5;
if (diff < thresh)
{
float diff2 = map(pow5(diff), 0, pow5(thresh), 0, 1);
c = lerpColor(black, red, diff2);
} else
{
float diff2 = map(1 - pow5(-diff + 1), 1 - pow5(-thresh + 1), 1, 0, 1);
c = lerpColor(red, white, diff2);
}
} else //apply gray scale shading
{
c = color(diff * 255, diff * 255, diff * 255);
}
currentImage.pixels[pix] = c;
}
}
currentImage.updatePixels();
}
}
答案 0 :(得分:0)
程序员遇到了问题。他想“我知道,我会用线程解决它!”。现在有问题。两个他
处理使用单个渲染线程。
这样做有充分理由,大多数其他渲染器都做同样的事情。实际上,我不知道任何多线程渲染器。
你应该只从Processing的主渲染线程中改变屏幕上的内容。换句话说,你应该只改变Processing的功能,而不是你自己的线程。这就是导致你看到闪烁的原因。你正在改变东西,因为它被吸引到屏幕上,这是一个可怕的想法。 (这就是为什么Processing首先使用单个渲染线程。)
您可以尝试使用多个线程进行处理,而不是渲染。但我非常怀疑这是值得的,就像你看到的那样,甚至可能会让事情变得更糟。
如果您想加快草图速度,您可能还会考虑提前进行处理而不是实时处理。在草图的开头进行所有计算,然后在绘制框架时参考计算结果。或者你可以提前画到PImage
,然后画那些。