我对Spark Dataframereader的机制有疑问。如果有人能帮助我,我将不胜感激。让我解释一下这里的场景
我正在从Dstream创建一个DataFrame。这在输入数据
中 var config = new HashMap[String,String]();
config += ("zookeeper.connect" ->zookeeper);
config += ("partition.assignment.strategy" ->"roundrobin");
config += ("bootstrap.servers" ->broker);
config += ("serializer.class" -> "kafka.serializer.DefaultEncoder");
config += ("group.id" -> "default");
val lines = KafkaUtils.createDirectStream[String, Array[Byte], StringDecoder, DefaultDecoder](ssc,config.toMap,Set(topic)).map(_._2)
lines.foreachRDD { rdd =>
if(!rdd.isEmpty()){
val rddJson = rdd.map { x => MyFunctions.mapToJson(x) }
val sqlContext = SQLContextSingleton.getInstance(ssc.sparkContext)
val rddDF = sqlContext.read.json(rddJson)
rddDF.registerTempTable("inputData")
val dbDF = ReadDataFrameHelper.readDataFrameHelperFromDB(sqlContext, jdbcUrl, "ABCD","A",numOfPartiton,lowerBound,upperBound)
以下是ReadDataFrameHelper的代码
def readDataFrameHelperFromDB(sqlContext:HiveContext,jdbcUrl:String,dbTableOrQuery:String,
columnToPartition:String,numOfPartiton:Int,lowerBound:Int,highBound:Int):DataFrame={
val jdbcDF = sqlContext.read.jdbc(url = jdbcUrl, table = dbTableOrQuery,
columnName = columnToPartition,
lowerBound = lowerBound,
upperBound = highBound,
numPartitions = numOfPartiton,
connectionProperties = new java.util.Properties()
)
jdbcDF
}
最后我正在做像这样的加入
val joinedData = rddDF.join(dbDF,rddDF("ID") === dbDF("ID")
&& rddDF("CODE") === dbDF("CODE"),"left_outer")
.drop(dbDF("code"))
.drop(dbDF("id"))
.drop(dbDF("number"))
.drop(dbDF("key"))
.drop(dbDF("loaddate"))
.drop(dbDF("fid"))
joinedData.show()
我的输入DStream将有1000行,数据将包含数百万行。因此,当我执行此连接时,将引发加载数据库中的所有行并读取这些行,或者这只是读取DB中具有来自输入DStream的code,id
的那些特定行
答案 0 :(得分:2)
由zero323指定,我还确认将从表中读取数据。我检查了数据库会话日志,发现整个数据集都已加载。
感谢zero323