我尝试通过Spark流媒体(Kafka直接API)消费来自Kafka的消息时遇到以下错误。使用Spark独立集群管理器时,这常常可以正常工作。我们刚刚使用Yarn切换到使用Cloudera 5.7来管理Spark集群,并开始看到以下错误。
几个细节: - Spark 1.6.0 - 使用Kafka直接流API - Kafka经纪人版(0.8.2.1) - Yarn执行器类路径中的Kafka版本(0.9) - 不受Cloudera管理的Kafka经纪人
我在使用独立集群管理器和yarn之间看到的唯一区别是消费者端使用的Kafka版本。 (0.8.2.1 vs 0.9)
试图找出版本不匹配真的是一个问题吗?如果确实如此,除了将Kafka经纪商升级到0.9之外,还有什么可以解决这个问题。 (最终是,但现在不是)
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 200.0 failed 4 times, most recent failure: Lost task 0.3 in stage 200.0 (TID 203,..): java.nio.BufferUnderflowException
at java.nio.HeapByteBuffer.get(HeapByteBuffer.java:151)
at java.nio.ByteBuffer.get(ByteBuffer.java:715)
at kafka.api.ApiUtils$.readShortString(ApiUtils.scala:40)
at kafka.api.TopicData$.readFrom(FetchResponse.scala:96)
at kafka.api.FetchResponse$$anonfun$4.apply(FetchResponse.scala:170)
at kafka.api.FetchResponse$$anonfun$4.apply(FetchResponse.scala:169)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:251)
at scala.collection.immutable.Range.foreach(Range.scala:141)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:251)
at scala.collection.AbstractTraversable.flatMap(Traversable.scala:105)
at kafka.api.FetchResponse$.readFrom(FetchResponse.scala:169)
at kafka.consumer.SimpleConsumer.fetch(SimpleConsumer.scala:135)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.fetchBatch(KafkaRDD.scala:192)
at org.apache.spark.streaming.kafka.KafkaRDD$KafkaRDDIterator.getNext(KafkaRDD.scala:208)
at org.apache.spark.util.NextIterator.hasNext(NextIterator.scala:73)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$toLocalIterator$1$$anonfun$org$apache$spark$rdd$RDD$$anonfun$$collectPartition$1$1.apply(RDD.scala:942)
at org.apache.spark.rdd.RDD$$anonfun$toLocalIterator$1$$anonfun$org$apache$spark$rdd$RDD$$anonfun$$collectPartition$1$1.apply(RDD.scala:942)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1869)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1869)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)