python Pandas在groupby.agg中调用一个复杂的函数

时间:2016-05-24 17:19:10

标签: python pandas lambda

Below is my dataframe

    Txn_Key Send_Agent           Send_Time            Pay_Time  Send_Amount  \
0         NaN  ANO080012 2012-05-31 02:25:00 2012-05-31 21:43:00       490.00
1         NaN  AUK359401 2012-05-31 11:25:00 2012-05-31 11:57:00       616.16
2         NaN  ACL000105 2012-05-31 13:07:00 2012-05-31 17:36:00       193.78
3         NaN  AED420319 2012-05-31 10:50:00 2012-05-31 11:34:00       999.43
4         NaN  ARA030210 2012-05-30 12:14:00 2012-05-31 04:16:00       433.29
5         NaN  AJ5020114 2012-05-31 02:37:00 2012-05-31 04:31:00       378.00
6         NaN  A11171047 2012-05-31 09:39:00 2012-05-31 10:08:00       865.34
  Pay_Amount        MTCN      Send_Phone  Refund_Flag       time_diff
0         475.68  9323625903        97549829          NaN 0 days 19:18:00
1         600.87  3545067820    440000000000          NaN 0 days 00:32:00
2         185.21  1453132764            0511          NaN 0 days 04:29:00
3         963.04  4509062067    971566016900          NaN 0 days 00:44:00
4         423.75  6898279087             144          NaN 0 days 16:02:00
5         377.99  5170985243    963954932506          NaN 0 days 01:54:00
6         833.89  5352719100      0644798854          NaN 0 days 00:29:00

因此,当下一行的Send_Amount相同时,我需要计数。使用lambda的groupby工作完全正常:

txn1 = txns.loc[:,['Send_Agent','Send_Amount']]
 Send_repeat_count =  txn1.groupby('Send_Agent').apply(lambda txn1 : (txn1.Send_Amount.shift() == txn1.Send_Amount).cumsum()

.... :)

但是类似的lambda函数在groupby.agg中不起作用。

grouped=txn.groupby('Send_Agent')

x=grouped.agg({'Send_Amount':'mean','Pay_Amount':'mean','time_diff':'min','MTCN':'size','Send_Phone':'nunique','Refund_Flag':'count','Send_Amount':'lambda txn1 : (txn1.Send_Amount.shift() == txn1.Send_Amount).cumsum()'})

AttributeError: 'Series' object has no attribute 'Send_Amount'

所以,我写了一个单独的函数来做同样的事情并在我的groupby.agg

中调用它
 def repeat_count(x):
if x==x.shift():
 ....:         cumsum()


x = grouped.agg({'Send_Amount':'mean','Pay_Amount':'mean','time_diff':'min','MTCN':'size','Send_Phone':'nunique','Refund_Flag':'count','Send_Amount':repeat_count(x)})

     ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

如果cumsum可以在group by.apply中正常工作,为什么它在函数内部不起作用。

1 个答案:

答案 0 :(得分:1)

通常,Send_Agent列将包含重复项(否则,按Send_Agent进行分组将毫无意义)。此外,(x==x.shift()).cumsum()将返回一个系列,其行数与每个Send_Agent组中的重复项一样多。

df.groupby(...).agg(func)要求func返回标量(例如浮点数)。 func不允许退回系列赛。 (相比之下,func可以在使用Series时返回DataFrame甚至df.groupby(...).apply(func)。)

如果要计算组中相邻行的数量相等,可以使用sum()而不是cumsum()。例如,

import numpy as np
import pandas as pd
pd.options.display.width = 1000
nan = np.nan
txn = pd.DataFrame(
    {'MTCN': [0, 9323625903, 3545067820, 1453132764, 4509062067, 6898279087, 5170985243, 5352719100], 
     'Pay_Amount': [1, 475.68, 600.87, 185.21, 963.04, 423.75, 377.99, 833.89],
     'Pay_Time': ['2012-05-31 10:08:00', '2012-05-31 21:43:00', '2012-05-31 11:57:00', '2012-05-31 17:36:00', 
                  '2012-05-31 11:34:00', '2012-05-31 04:16:00', '2012-05-31 04:31:00', 
                  '2012-05-31 10:08:00'], 
     'Refund_Flag': [nan, nan, nan, nan, nan, nan, nan, nan], 
     'Send_Amount': [865.34, 490.0, 616.16, 193.78, 999.43, 433.29, 378.0, 865.34],
     'Send_Phone': [3, 97549829, 440000000000, 511, 971566016900, 144, 963954932506, 644798854],
     'Send_Time': ['2012-05-31 09:39:00', '2012-05-31 02:25:00', '2012-05-31 11:25:00', '2012-05-31 13:07:00', 
                   '2012-05-31 10:50:00', '2012-05-30 12:14:00', '2012-05-31 02:37:00', 
                   '2012-05-31 09:39:00'], 
     'Txn_Key': [nan, nan, nan, nan, nan, nan, nan, nan],
     'Send_Agent': ['A11171047', 'ANO080012', 'AUK359401', 'ACL000105', 'AED420319', 
                    'ARA030210', 'AJ5020114', 'A11171047'], 
     'time_diff': ['0 days 00:29:00', '0 days 19:18:00', '0 days 00:32:00', '0 days 04:29:00', 
                   '0 days 00:44:00', '0 days 16:02:00', '0 days 01:54:00', 
                   '0 days 00:29:00', ]} )
txn['time_diff'] = pd.to_timedelta(txn['time_diff']) 

grouped = txn.groupby('Send_Agent')

def repeat_count(s):
    return (s.shift() == s).sum()

result = grouped.agg(
    {'Pay_Amount':'mean',
     'time_diff':'min',
     'MTCN':'size',
     'Send_Phone':'nunique',
     'Refund_Flag':'count',
     'Send_Amount': ['mean', repeat_count]})
print(result)

产量

           Refund_Flag       time_diff Send_Phone MTCN Send_Amount              Pay_Amount
                 count             min    nunique size        mean repeat_count       mean
Send_Agent                                                                                
A11171047            0   1740000000000          2    2      865.34          1.0    417.445
ACL000105            0  16140000000000          1    1      193.78          0.0    185.210
AED420319            0   2640000000000          1    1      999.43          0.0    963.040
AJ5020114            0   6840000000000          1    1      378.00          0.0    377.990
ANO080012            0  69480000000000          1    1      490.00          0.0    475.680
ARA030210            0  57720000000000          1    1      433.29          0.0    423.750
AUK359401            0   1920000000000          1    1      616.16          0.0    600.870

(我添加了一行,以便repeat_count并不总是返回0。)

使用DataFrame.groupby(...).apply(func)时,传递给func的对象是DataFrame。因此,

txn1.groupby('Send_Agent').apply(
    lambda txn1 : (txn1.Send_Amount.shift() == txn1.Send_Amount).cumsum())

有效,因为txn1中的lambda是一个带有Send_Amount列的DataFrame。

相反,当您使用DataFrame.groupby(...).agg({'col': func})时,传递给func的对象是系列,其值来自col指定的列。因此

x = grouped.agg({'Send_Amount':'mean','Pay_Amount':'mean','time_diff':'min','MTCN':'size','Send_Phone':'nunique','Refund_Flag':'count','Send_Amount':lambda txn1 : (txn1.Send_Amount.shift() == txn1.Send_Amount).cumsum()})

引发AttributeError: 'Series' object has no attribute 'Send_Amount'因为系列传递给lambda函数(并且绑定到变量txn1)没有Send_Amount属性。

如果您使用repeat_count

之类的内容
def repeat_count(x):
    if x==x.shift():
        return x.cumsum()

然后if x==x.shift()加注

ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

因为x==x.shift()是一个系列而if expression导致expression在布尔上下文中进行评估。也就是说,expression.__bool__()被调用。 __bool__必须返回True或False或引发异常。因此,要使if x==x.shift()有意义,(x==x.shift()).__bool__()必须返回True或False。

Series.__bool__()总是引发上面的ValueError,因为当所有系列中的值为True或<时,Pandas(按设计)不会猜测它是否应该返回True em>任何的值都是True,或者当系列只是非空时等等...... ValueError消息指向正确的方向。通常,通过调用(x==x.shift()).any()(x==x.shift()).all()等来明确您想要的布尔值来解决问题。

关于效果的说明:通常情况下,使用自定义函数的groupby/agg与使用groupby/aggcount等内置方法的sum的效果不同。因此,通常需要找出一种方法(如果可能的话)来表达内置方法的计算方法。在这种情况下,您可以在整个DataFrame 上进行预备计算,然后允许您使用groupby/agg/sum

txn = txn.sort_values(by='Send_Agent')
txn['repeat'] = ((txn['Send_Agent'].shift() == txn['Send_Agent']) 
                 & (txn['Send_Agent'].shift() == txn['Send_Agent']))

grouped = txn.groupby('Send_Agent')
result = grouped.agg(
    {'Pay_Amount':'mean',
     'time_diff':'min',
     'MTCN':'size',
     'Send_Phone':'nunique',
     'Refund_Flag':'count',
     'Send_Amount': 'mean',
     'repeat':'sum'})
print(result)