我想在Z3中建模,在数组中交换两个元素会产生排列。
交换两个元素可以很自然地建模:
(declare-sort Obj)
; a0 is original array, a2 is array after swap
(declare-const a0 (Array Int Obj))
(declare-const a1 (Array Int Obj))
(declare-const a2 (Array Int Obj))
(declare-const i Int)
(declare-const j Int)
(assert (= a1 (store a0 i (select a0 j))))
(assert (= a2 (store a1 j (select a0 i))))
但我如何建模" a2是a0"的排列。并检查这是一个有效的声明?
在一个类似的问题(Equal lists are permutations of one another. Why does Z3 answer 'unknown'?)中,作者提供了一个permutation
函数,它检查两个数组是否是彼此的排列。然而,这是两个问题。首先,该函数可以将两个数组视为排列,例如,如果一个数组包含一个对象x
两次,另一个数组只包含x
一次。其次,Z3甚至无法解决涉及此函数的非常简单的断言(因此问题)。
在答案中,有人建议使用序列来模拟问题。如果数组可以多次包含一个对象,那么这个答案中的排列函数也存在问题。此外,对两个元素的交换进行建模似乎对于我用序列表达来说非常不自然。
答案 0 :(得分:1)
用于证明两个数组或序列的等式模置换的两种常见解(在软件验证中)是1.将序列抽象为多个集合,并证明它们的相等性,以及2.维持置换证据,即映射函数从新的索引到原始索引的每个元素(另请参阅this encoding of a sorting algorithm或者,对于不成功的this encoding of the quickselect algorithm)。
以下是您的原始编码,以及维护排列见证 pw i 的代码。在原始数组的每次修改(交换)之后更新见证,这样它总是为每个索引 k 提供原始数组索引的元素。 现在可以在索引 k 找到。
最初的见证人pw0
是身份功能。
(set-option :auto_config false)
(set-option :smt.mbqi false)
(declare-sort Obj)
; a0 is original array, a2 is array after swap
(declare-const a0 (Array Int Obj))
(declare-const a1 (Array Int Obj))
(declare-const a2 (Array Int Obj))
(declare-const i Int)
(declare-const j Int)
; Permutation witness
(declare-const pw0 (Array Int Int))
(declare-const pw1 (Array Int Int))
(declare-const pw2 (Array Int Int))
; The initial permutation witness is the identity function
(assert (forall ((k Int)) (= (select pw0 k) k)))
; (check-sat) ; Sanity check (must not return UNSAT)
(push)
; Check that the initial permutation witness is the identity function
(assert (not (forall ((k Int)) (= (select a0 k) (select a0 (select pw0 k))))))
(check-sat) ; UNSAT unexpected
(pop)
; Swap two elements of the array
(assert (= a1 (store a0 i (select a0 j))))
(assert (= a2 (store a1 j (select a0 i))))
; Update the permutation witness correspondingly
(assert (= pw1 (store pw0 i (select pw0 j))))
(assert (= pw2 (store pw1 j (select pw0 i))))
(push)
; Check that pw2 indeed witnesses the permutation of a2 w.r.t. a0
(assert (not (forall ((k Int)) (= (select a2 k) (select a0 (select pw2 k))))))
(check-sat) ; UNSAT unexpected
(pop)
; (check-sat) ; Sanity check (must not return UNSAT)
(declare-const a3 (Array Int Obj))
(declare-const a4 (Array Int Obj))
(declare-const pw3 (Array Int Int))
(declare-const pw4 (Array Int Int))
(push)
; Another swap ...
(assert (= a3 (store a2 j (select a2 (+ i 1)))))
(assert (= a4 (store a3 (+ i 1) (select a2 j))))
; ... but we forgot to update the permutation witness
(assert (= pw4 pw2))
(assert (not (forall ((k Int)) (= (select a4 k) (select a0 (select pw4 k))))))
(check-sat) ; Must not return UNSAT
(pop)
(push)
; A swap gone wrong ...
(assert (= a3 (store a2 j (select a2 (+ i 1)))))
(assert (= a4 (store a3 (+ i 1) (select a3 j)))) ; Last occurrence of a3 should be a2 (fix --> UNSAT)
; ... but the permutation witness is updated correctly
(assert (= pw3 (store pw2 j (select pw2 (+ i 1)))))
(assert (= pw4 (store pw3 (+ i 1) (select pw2 j))))
(assert (not (forall ((k Int)) (= (select a4 k) (select a0 (select pw4 k))))))
(check-sat) ; Must not return UNSAT
(pop)