我有一个充满浮动(正面和负面)和一些NaN的DataFrame。 我想用它的符号替换每个浮点数:
if it's NaN -> it remains Nan
if positive -> replace with 1
if negative -> replace with -1
if zero -> leave it as 0
有任何建议可以进行大规模替换吗?
提前谢谢
答案 0 :(得分:19)
您可以使用np.sign
:
<div class="example"><span class="text">BIG TEXT 1</span>
</div>
<div class="example"><span class="text">BIG TEXT 2</span>
</div>
<div class="example"><span class="text">BIG TEXT 3</span>
</div>
要应用于所有列,您可以直接传递数据帧:
df
Out[100]:
A
0 -4.0
1 2.0
2 NaN
3 0.0
import numpy as np
np.sign(df["A"])
Out[101]:
0 -1.0
1 1.0
2 NaN
3 0.0
Name: A, dtype: float64
答案 1 :(得分:6)
您可以使用boolean indexing
:
df
Out[121]:
0 1 2 3
0 -2.932447 -1.686652 NaN -0.908441
1 1.254436 0.000000 0.072242 0.796944
2 2.626737 0.169639 -1.457195 1.169238
3 0.000000 -1.174251 0.660111 1.115518
4 -1.998091 -0.125095 0.000000 -0.506782
np.sign(df)
Out[122]:
0 1 2 3
0 -1.0 -1.0 NaN -1.0
1 1.0 0.0 1.0 1.0
2 1.0 1.0 -1.0 1.0
3 0.0 -1.0 1.0 1.0
4 -1.0 -1.0 0.0 -1.0
import pandas as pd
import numpy as np
df = pd.DataFrame({'A':[-1,3,0,5],
'B':[4,5,6,5],
'C':[8,-9,np.nan,7]})
print (df)
A B C
0 -1 4 8.0
1 3 5 -9.0
2 0 6 NaN
3 5 5 7.0
答案 2 :(得分:2)
代码 -
import pandas as pd
df = pd.DataFrame({'x' : [-5.3, 2.5, 0, float('nan')]})
df['x'] = df['x'].apply(func = lambda x : x if not x else x // abs(x))
print(df)
输出 -
x
0 -1
1 1
2 0
3 NaN