我正在寻找使用dictreader / dictwriter重命名标头的最佳方法,以添加到我已完成的其他步骤。
这就是我要对下面的源数据示例所做的。
当我在
时如果我使用'reader = csv.reader.inf',则删除第一行并重新排序列,但正如预期的那样,没有标题重命名
当我运行dictreader行'reader = csv.DictReader(inf,fieldnames =('ASXCode','CompanyName','GICS'))时,我收到错误'dict包含不在fieldnames中的字段:'和显示第一行数据而不是标题。
我有点困惑于如何解决这个问题,所以任何提示都会受到赞赏。
源数据示例
ASX listed companies as at Mon May 16 17:01:04 EST 2016
Company name ASX code GICS industry group
1-PAGE LIMITED 1PG Software & Services
1300 SMILES LIMITED ONT Health Care Equipment & Services
1ST AVAILABLE LTD 1ST Health Care Equipment & Services
我的代码
import csv
import urllib.request
from itertools import islice
local_filename = "C:\\myfile.csv"
url = ('http://mysite/afile.csv')
temp_filename, headers = urllib.request.urlretrieve(url)
with open(temp_filename, 'r', newline='') as inf, \
open(local_filename, 'w', newline='') as outf:
# reader = csv.DictReader(inf, fieldnames=('ASXCode', 'CompanyName', 'GICS'))
reader = csv.reader(inf)
fieldnames = ['ASX code', 'Company name', 'GICS industry group']
writer = csv.DictWriter(outf, fieldnames=fieldnames)
# 1. Remove top 2 rows
next(islice(reader, 2, 2), None)
# 2. Reorder Columns
writer.writeheader()
for row in csv.DictReader(inf):
writer.writerow(row)
答案 0 :(得分:1)
此处的IIUC是使用pandas
及其函数read_csv
的解决方案:
import pandas as pd
#Considering that you have your data in a file called 'stock.txt'
#and it is tab separated, by default the blank lines are not read by read_csv,
#hence set the header=1
df = pd.read_csv('stock.txt', sep='\t',header=1)
#Rename the columns as required
df.columns= ['CompanyName', 'ASXCode', 'GICS']
#Reorder the columns as required
df = df[['ASXCode','CompanyName','GICS']]
答案 1 :(得分:1)
根据你的提示我最终得到了它。我之前没有使用过熊猫,所以必须先准备好一点熊猫。
我最终计算出pandas使用了一个数据框,所以我不得不用tocsv函数做一些不同的事情,并最终将index = False参数添加到tocsv函数中以删除df索引。
现在一切都很棒。
import csv
import os
import urllib.request
import pandas as pd
local_filename = "C:\\myfile.csv"
url = ('http://mysite/afile.csv')
temp_filename, headers = urllib.request.urlretrieve(url)
#using pandas dataframe
df = pd.read_csv(temp_filename, sep=',',header=1) #skip header
df.columns = ['CompanyName', 'ASXCode', 'GICS'] #rename columns
df = df[['ASXCode','CompanyName','GICS']] #reorder columns
df.to_csv(local_filename, sep=',', index=False)
os.remove(temp_filename) # clean up