因此,我试图获取有关股票的数据,收盘价和移动平均线50,100,200。我得到了另一个数组,然后是买入或卖出的标签。它是在数据框架上与所有其他阵列一起制定的。但问题是,当我尝试训练分类时,它给了我一个错误:
ValueError: Found array with dim 3. Estimator expected <= 2.
When I concatenate the array, it gives me an error, ValueError: Unknown label type: array([[7.87401353,]])
中包含更多值
这是我的代码:
from sklearn import tree
import pandas as pd
import pandas_datareader.data as web
import numpy as np
df = web.DataReader('goog', 'yahoo', start='2012-5-1', end='2016-5-20')
close_price = df[['Close']]
ma_50 = (pd.rolling_mean(close_price, window=50))
ma_100 = (pd.rolling_mean(close_price, window=100))
ma_200 = (pd.rolling_mean(close_price, window=200))
#adding buys and sell based on the values
df['B/S']= (df['Close'].diff() < 0).astype(int)
close_buy = df[['Close']+['B/S']]
closing = df[['Close']].as_matrix()
buy_sell = df[['B/S']]
close_buy = pd.DataFrame.dropna(close_buy, 0, 'any')
ma_50 = pd.DataFrame.dropna(ma_50, 0, 'any')
ma_100 = pd.DataFrame.dropna(ma_100, 0, 'any')
ma_200 = pd.DataFrame.dropna(ma_200, 0, 'any')
close_buy = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_50 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_100 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_200 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
buy_sell = (df.loc['2013-02-15':'2016-05-21']).as_matrix() # Fixed
list(close_buy)
clf = tree.DecisionTreeClassifier()
X = list([close_buy,ma_50,ma_100,ma_200])
y = [buy_sell]
答案 0 :(得分:1)
问题是您正在创建一个变量X
,它是一个二维数组的列表。这自动意味着第三维。
# offending line
X = list([close_buy,ma_50,ma_100,ma_200])
这需要连接以维持2个维度。
# corrected
X = np.concatenate([close_buy,ma_50,ma_100,ma_200], axis=1)
另外,我怀疑一旦这个问题得到解决,你将会有另一个问题:
y = [buy_sell]
没有理由将其包装在[]
中。这将导致相同的三维问题。就这样说:
y = buy_sell